廣西中醫(yī)藥大學(xué)賽恩斯新醫(yī)藥學(xué)院《知識表示方法》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
廣西中醫(yī)藥大學(xué)賽恩斯新醫(yī)藥學(xué)院《知識表示方法》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
廣西中醫(yī)藥大學(xué)賽恩斯新醫(yī)藥學(xué)院《知識表示方法》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
廣西中醫(yī)藥大學(xué)賽恩斯新醫(yī)藥學(xué)院《知識表示方法》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
廣西中醫(yī)藥大學(xué)賽恩斯新醫(yī)藥學(xué)院《知識表示方法》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準考證號學(xué)校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁廣西中醫(yī)藥大學(xué)賽恩斯新醫(yī)藥學(xué)院《知識表示方法》

2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能中的深度學(xué)習(xí)模型通常需要大量的訓(xùn)練數(shù)據(jù)。假設(shè)要訓(xùn)練一個用于圖像分類的卷積神經(jīng)網(wǎng)絡(luò)(CNN),但可用的標注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強技術(shù),如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對數(shù)據(jù)的需求C.直接使用未標注的數(shù)據(jù)進行訓(xùn)練D.放棄深度學(xué)習(xí)模型,選擇傳統(tǒng)的機器學(xué)習(xí)算法2、知識圖譜是人工智能中用于表示知識和關(guān)系的一種技術(shù)。假設(shè)一個智能問答系統(tǒng)基于知識圖譜來回答用戶的問題。以下關(guān)于知識圖譜的描述,哪一項是錯誤的?()A.知識圖譜將實體、關(guān)系和屬性以圖的形式組織起來,便于知識的表示和查詢B.可以通過從大量文本中自動抽取信息來構(gòu)建知識圖譜C.知識圖譜中的知識是固定不變的,一旦構(gòu)建完成就無需更新D.結(jié)合自然語言處理技術(shù),能夠?qū)崿F(xiàn)基于知識圖譜的智能問答和推理3、在人工智能的情感分析任務(wù)中,需要判斷文本所表達的情感傾向,如積極、消極或中性。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價情感,以下哪種方法在處理大量非結(jié)構(gòu)化文本數(shù)據(jù)時效果較好?()A.基于詞典的方法B.基于機器學(xué)習(xí)的分類方法C.基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)方法D.人工閱讀和判斷4、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)在圖像生成、數(shù)據(jù)增強等方面表現(xiàn)出色。假設(shè)我們想要生成逼真的人臉圖像,使用GAN來實現(xiàn)。那么,以下關(guān)于GAN的描述,哪一項是錯誤的?()A.由生成器和判別器兩個部分組成,它們通過相互對抗來學(xué)習(xí)B.生成器的目標是生成盡可能逼真的假樣本,以欺騙判別器C.判別器的能力越強,生成器就越難學(xué)習(xí)到有效的特征D.GAN的訓(xùn)練過程是穩(wěn)定的,不會出現(xiàn)模式崩潰等問題5、人工智能在智能推薦系統(tǒng)中發(fā)揮著重要作用。例如,電商平臺通過分析用戶的購買歷史和瀏覽行為為用戶推薦商品。以下關(guān)于智能推薦系統(tǒng)的描述,哪一項是不正確的?()A.推薦系統(tǒng)可以基于用戶的協(xié)同過濾進行推薦B.推薦系統(tǒng)只考慮用戶的近期行為,忽略歷史行為C.推薦系統(tǒng)可以結(jié)合內(nèi)容過濾和協(xié)同過濾提高推薦效果D.推薦系統(tǒng)需要不斷更新和優(yōu)化以適應(yīng)用戶興趣的變化6、在人工智能的圖像識別任務(wù)中,需要對大量的圖像進行分類,例如區(qū)分貓、狗、鳥等不同的動物類別。假設(shè)數(shù)據(jù)集包含各種不同角度、光照條件和背景下的圖像,為了提高圖像識別的準確率和泛化能力,以下哪種技術(shù)或策略是重要的?()A.增加數(shù)據(jù)增強操作,如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像B.使用更復(fù)雜的神經(jīng)網(wǎng)絡(luò)架構(gòu),增加層數(shù)和參數(shù)C.只使用高質(zhì)量、清晰的圖像進行訓(xùn)練D.減少訓(xùn)練數(shù)據(jù)的數(shù)量,以加快訓(xùn)練速度7、人工智能中的模型評估指標對于衡量模型性能至關(guān)重要。假設(shè)要評估一個圖像分類模型的性能,以下關(guān)于評估指標的描述,正確的是:()A.準確率是唯一可靠的評估指標,能夠全面反映模型的性能B.召回率和精確率相互獨立,沒有關(guān)聯(lián)C.F1值綜合考慮了召回率和精確率,能夠更全面地評估模型D.混淆矩陣只適用于二分類問題,對于多分類問題沒有作用8、在自然語言處理中,機器翻譯是一個重要的應(yīng)用。假設(shè)正在開發(fā)一種新的機器翻譯模型,以下關(guān)于機器翻譯技術(shù)的描述,正確的是:()A.基于規(guī)則的機器翻譯方法總是能夠生成最準確和自然的翻譯結(jié)果B.神經(jīng)網(wǎng)絡(luò)機器翻譯模型不需要大量的平行語料進行訓(xùn)練就能達到很好的效果C.結(jié)合統(tǒng)計方法和神經(jīng)網(wǎng)絡(luò)的機器翻譯模型能夠更好地處理復(fù)雜的語言結(jié)構(gòu)和語義D.機器翻譯的質(zhì)量只取決于所使用的算法,與語言的文化背景和語境無關(guān)9、在人工智能的發(fā)展中,算力是重要的支撐因素。假設(shè)要訓(xùn)練一個大型的人工智能模型,以下關(guān)于算力的描述,哪一項是不正確的?()A.強大的計算資源,如GPU集群,可以加速模型的訓(xùn)練過程B.云計算平臺可以提供靈活的算力支持,滿足不同規(guī)模的訓(xùn)練需求C.算力的提升僅僅取決于硬件的性能,與算法的優(yōu)化無關(guān)D.合理分配和利用算力資源對于提高訓(xùn)練效率和降低成本至關(guān)重要10、在人工智能的模型壓縮中,假設(shè)需要在不顯著降低模型性能的前提下減少模型的參數(shù)數(shù)量和計算量。以下哪種方法可以實現(xiàn)這一目標?()A.剪枝技術(shù),去除不重要的連接和參數(shù)B.量化技術(shù),降低參數(shù)的精度C.知識蒸餾,將大模型的知識傳遞給小模型D.以上都是11、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)在圖像生成和數(shù)據(jù)增強等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的人臉圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN的訓(xùn)練過程非常穩(wěn)定,不會出現(xiàn)模式崩潰等問題B.生成器和判別器的能力不需要平衡,只要其中一個強大就能生成好的圖像C.GAN可以通過不斷的對抗訓(xùn)練,學(xué)習(xí)到真實數(shù)據(jù)的分布,從而生成逼真的新樣本D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域的數(shù)據(jù)生成12、人工智能在醫(yī)療領(lǐng)域的應(yīng)用具有巨大的潛力,但也面臨著數(shù)據(jù)隱私和安全性的挑戰(zhàn)。假設(shè)一個醫(yī)療機構(gòu)要使用人工智能技術(shù)分析患者的醫(yī)療數(shù)據(jù)來輔助診斷疾病,同時要確保患者數(shù)據(jù)不被泄露和濫用。以下哪種技術(shù)或方法在保障數(shù)據(jù)安全和隱私方面最為有效?()A.數(shù)據(jù)加密B.數(shù)據(jù)脫敏C.建立嚴格的訪問控制機制D.以上方法綜合運用13、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開發(fā)一個能夠監(jiān)測農(nóng)作物病蟲害的系統(tǒng),以下關(guān)于數(shù)據(jù)采集的方式,哪一項是最有效的?()A.依靠農(nóng)民的人工觀察和報告,將信息輸入系統(tǒng)B.使用無人機搭載的圖像傳感器,定期拍攝農(nóng)田圖像C.僅在農(nóng)作物出現(xiàn)明顯病蟲害癥狀時進行數(shù)據(jù)采集D.隨機選擇農(nóng)田的部分區(qū)域進行數(shù)據(jù)采集,以節(jié)省成本14、人工智能在圖像識別領(lǐng)域取得了顯著的成果。假設(shè)要開發(fā)一個能夠識別水果種類的圖像識別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預(yù)處理的步驟,哪一項是最關(guān)鍵的?()A.對圖像進行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對圖像進行增強和去噪處理,提高圖像質(zhì)量D.隨機打亂圖像的順序,增加數(shù)據(jù)的多樣性15、在人工智能的圖像生成任務(wù)中,例如生成逼真的人臉圖像或風(fēng)景圖像,假設(shè)需要生成具有高度細節(jié)和真實感的圖像。以下哪種技術(shù)或模型在圖像生成方面表現(xiàn)較為出色?()A.生成對抗網(wǎng)絡(luò)(GANs),通過對抗訓(xùn)練生成圖像B.自編碼器(Autoencoder),壓縮和解壓縮圖像C.傳統(tǒng)的圖像處理算法,如濾波和邊緣檢測D.隨機生成像素值來創(chuàng)建圖像二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述人工智能在保險行業(yè)的風(fēng)險評估和定價。2、(本題5分)談?wù)勌摂M現(xiàn)實和增強現(xiàn)實中的人工智能元素。3、(本題5分)簡述人工智能中的倫理問題和挑戰(zhàn)。4、(本題5分)簡述人工智能在法律領(lǐng)域的應(yīng)用和挑戰(zhàn)。三、操作題(本大題共5個小題,共25分)1、(本題5分)運用Python中的Scikit-learn庫,實現(xiàn)線性判別分析(LDA)算法對數(shù)據(jù)進行分類和降維,通過可視化展示分類效果。2、(本題5分)使用機器學(xué)習(xí)算法對氣象數(shù)據(jù)進行分析,預(yù)測氣候變化的趨勢和影響,為應(yīng)對氣候變化提供決策支持。3、(本題5分)使用Python的Scikit-learn庫,實現(xiàn)線性判別分析(LDA)對數(shù)據(jù)集進行降維和分類,比較與主成分分析(PCA)的效果。4、(本題5分)利用Python的TensorFlow框架,構(gòu)建一個膠囊網(wǎng)絡(luò)(CapsuleNetwork)模型,對Fashion-MNIST數(shù)據(jù)集進行分類。分析膠囊網(wǎng)絡(luò)在處理小樣本和復(fù)雜模式數(shù)據(jù)時的優(yōu)勢。5、(本題5分)使用機器學(xué)習(xí)算法預(yù)測股票價格的走勢,收集歷史股票數(shù)據(jù)進行特征提取和模型訓(xùn)練,評估預(yù)測的準確性。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)考察一款

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論