




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省靖遠縣靖安中學2024年畢業升學考試模擬卷數學卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.2.如圖所示,在折紙活動中,小明制作了一張△ABC紙片,點D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=70°,則∠1+∠2=()A.70° B.110° C.130° D.140°3.已知3a﹣2b=1,則代數式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣34.下列實數中,在2和3之間的是()A. B. C. D.5.小麗只帶2元和5元的兩種面額的鈔票(數量足夠多),她要買27元的商品,而商店不找零錢,要她剛好付27元,她的付款方式有()種.A.1 B.2 C.3 D.46.如圖,在中,分別在邊邊上,已知,則的值為()A. B. C. D.7.若關于的方程的兩根互為倒數,則的值為()A. B.1 C.-1 D.08.有以下圖形:平行四邊形、矩形、等腰三角形、線段、菱形,其中既是軸對稱圖形又是中心對稱圖形的有()A.5個B.4個C.3個D.2個9.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數是()A.15° B.30° C.45° D.60°10.如圖中任意畫一個點,落在黑色區域的概率是()A. B. C.π D.5011.平面直角坐標系中的點P(2﹣m,m)在第一象限,則m的取值范圍在數軸上可表示為()A. B.C. D.12.在直角坐標系中,我們把橫、縱坐標都為整數的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.10二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖△EDB由△ABC繞點B逆時針旋轉而來,D點落在AC上,DE交AB于點F,若AB=AC,DB=BF,則AF與BF的比值為_____.14.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為_____.15.分解因式:x2y﹣2xy2+y3=_____.16.我國古代數學著作《九章算術》卷七有下列問題:“今有共買物,人出八,盈三;人出七,不足四.問人數、物價幾何?”意思是:現在有幾個人共同出錢去買件物品,如果每人出8錢,則剩余3錢;如果每人出7錢,則差4錢.問有多少人,物品的價格是多少?設有人,則可列方程為__________.17.如圖,半圓O的直徑AB=7,兩弦AC、BD相交于點E,弦CD=,且BD=5,則DE=_____.18.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某中學為了了解在校學生對校本課程的喜愛情況,隨機調查了部分學生對五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據調查結果繪制了如下的兩個不完整統計圖.請根據圖中所提供的信息,完成下列問題:(1)本次被調查的學生的人數為;(2)補全條形統計圖(3)扇形統計圖中,類所在扇形的圓心角的度數為;(4)若該中學有2000名學生,請估計該校最喜愛兩類校本課程的學生約共有多少名.20.(6分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.21.(6分)如圖,已知在中,,是的平分線.(1)作一個使它經過兩點,且圓心在邊上;(不寫作法,保留作圖痕跡)(2)判斷直線與的位置關系,并說明理由.22.(8分)今年,我國海關總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外.如圖,某天我國一艘海監船巡航到A港口正西方的B處時,發現在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監船向A港口發出指令,執法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.(1)求B點到直線CA的距離;(2)執法船從A到D航行了多少海里?(結果保留根號)23.(8分)隨著中國傳統節日“端午節”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙兩種品牌粽子每盒分別為多少元?陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節省了多少錢?24.(10分)在平面直角坐標系xOy中,拋物線y=mx2﹣2mx﹣3(m≠0)與x軸交于A(3,0),B兩點.(1)求拋物線的表達式及點B的坐標;(2)當﹣2<x<3時的函數圖象記為G,求此時函數y的取值范圍;(3)在(2)的條件下,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M.若經過點C(4.2)的直線y=kx+b(k≠0)與圖象M在第三象限內有兩個公共點,結合圖象求b的取值范圍.25.(10分)如圖1,正方形ABCD的邊長為4,把三角板的直角頂點放置BC中點E處,三角板繞點E旋轉,三角板的兩邊分別交邊AB、CD于點G、F.(1)求證:△GBE∽△GEF.(2)設AG=x,GF=y,求Y關于X的函數表達式,并寫出自變量取值范圍.(3)如圖2,連接AC交GF于點Q,交EF于點P.當△AGQ與△CEP相似,求線段AG的長.26.(12分)水龍頭關閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據試驗數據繪制出圖②所示的容器內盛水量W(L)與滴水時間t(h)的函數關系圖象,請結合圖象解答下列問題:容器內原有水多少?求W與t之間的函數關系式,并計算在這種滴水狀態下一天的滴水量是多少升?圖①圖②27.(12分)某商店準備購進甲、乙兩種商品.已知甲商品每件進價15元,售價20元;乙商品每件進價35元,售價45元.(1)若該商店同時購進甲、乙兩種商品共100件,恰好用去2700元,求購進甲、乙兩種商品各多少件?(2)若該商店準備用不超過3100元購進甲、乙兩種商品共100件,且這兩種商品全部售出后獲利不少于890元,問應該怎樣進貨,才能使總利潤最大,最大利潤是多少?(利潤=售價﹣進價)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.2、D【解析】∵四邊形ADA'E的內角和為(4-2)?180°=360°,而由折疊可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.3、B【解析】
先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點睛】本題考查了求代數式的值,能夠整體代入是解此題的關鍵.4、C【解析】
分析:先求出每個數的范圍,逐一分析得出選項.詳解:A、3<π<4,故本選項不符合題意;
B、1<π?2<2,故本選項不符合題意;
C、2<<3,故本選項符合題意;
D、3<<4,故本選項不符合題意;故選C.點睛:本題考查了估算無理數的大小,能估算出每個數的范圍是解本題的關鍵.5、C【解析】分析:先根據題意列出二元一次方程,再根據x,y都是非負整數可求得x,y的值.詳解:解:設2元的共有x張,5元的共有y張,由題意,2x+5y=27∴x=(27-5y)∵x,y是非負整數,∴或或,∴付款的方式共有3種.故選C.點睛:本題考查二元一次方程的應用,解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程,再根據實際意義求解.6、B【解析】
根據DE∥BC得到△ADE∽△ABC,根據相似三角形的性質解答.【詳解】解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
故選:B.【點睛】本題考查了相似三角形的判定和性質,掌握相似三角形的對應邊的比等于相似比是解題的關鍵.7、C【解析】
根據已知和根與系數的關系得出k2=1,求出k的值,再根據原方程有兩個實數根,即可求出符合題意的k的值.【詳解】解:設、是的兩根,由題意得:,由根與系數的關系得:,∴k2=1,解得k=1或?1,∵方程有兩個實數根,則,當k=1時,,∴k=1不合題意,故舍去,當k=?1時,,符合題意,∴k=?1,故答案為:?1.【點睛】本題考查的是一元二次方程根與系數的關系及相反數的定義,熟知根與系數的關系是解答此題的關鍵.8、C【解析】矩形,線段、菱形是軸對稱圖形,也是中心對稱圖形,符合題意;等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;平行四邊形不是軸對稱圖形,是中心對稱圖形,不符合題意.共3個既是軸對稱圖形又是中心對稱圖形.故選C.9、B【解析】
只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關鍵是學會利用數形結合的首先解決問題,屬于中考常考題型.10、B【解析】
抓住黑白面積相等,根據概率公式可求出概率.【詳解】因為,黑白區域面積相等,所以,點落在黑色區域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關鍵點:分清黑白區域面積關系.11、B【解析】
根據第二象限中點的特征可得:,解得:.在數軸上表示為:故選B.考點:(1)、不等式組;(2)、第一象限中點的特征12、D【解析】試題分析:根據圓的半徑可知:在圓上的整數點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經過任意兩點的“整點直線”有6條,經過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、5【解析】
先利用旋轉的性質得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性質和三角形內角和定理證明∠ABD=∠A,則BD=AD,然后證明△BDC∽△ABC,則利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF與BF的比值.【詳解】∵如圖△EDB由△ABC繞點B逆時針旋轉而來,D點落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF?AF-BF2=0,∴AF=﹣1+52BF,即AF與BF的比值為【點睛】本題主要考查了旋轉的性質、等腰三角形的性質、相似三角形的性質,熟練掌握這些知識點并靈活運用是解題的關鍵.14、1【解析】
作AB的中點E,連接EM、CE,根據直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據三邊關系即可求解.【詳解】作AB的中點E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點,∴CE=AB=5,∵M是BD的中點,E是AB的中點,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【點睛】本題考查了點與圓的位置關系、三角形的中位線定理的知識,要結合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.15、y(x﹣y)2【解析】
原式提取公因式,再利用完全平方公式分解即可【詳解】x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握運算法則是解本題的關鍵.16、【解析】
根據每人出8錢,則剩余3錢;如果每人出7錢,則差4錢,可以列出相應的方程,本題得以解決【詳解】解:由題意可設有人,列出方程:故答案為【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.17、.【解析】
連接OD,OC,AD,由⊙O的直徑AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根據勾股定理可求出AD的長,在Rt△ADE中,利用∠DAC的正切值求解即可.【詳解】解:連接OD,OC,AD,∵半圓O的直徑AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴在Rt△ADE中,∵∠DAC=30°,∴DE=AD?tan30°故答案為【點睛】本題考查了圓周角定理、等邊三角形的判定與性質,勾股定理的應用等知識;綜合性比較強.18、6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因為∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)300;(2)見解析;(3)108°;(4)約有840名.【解析】
(1)根據A種類人數及其占總人數百分比可得答案;
(2)用總人數乘以B的百分比得出其人數,即可補全條形圖;
(3)用360°乘以C類人數占總人數的比例可得;
(4)總人數乘以C、D兩類人數占樣本的比例可得答案.【詳解】解:(1)本次被調查的學生的人數為69÷23%=300(人),
故答案為:300;
(2)喜歡B類校本課程的人數為300×20%=60(人),
補全條形圖如下:
(3)扇形統計圖中,C類所在扇形的圓心角的度數為360°×=108°,
故答案為:108°;
(4)∵2000×=840,
∴估計該校喜愛C,D兩類校本課程的學生共有840名.【點睛】本題考查條形統計圖、扇形統計圖的綜合運用.讀懂統計圖,從統計圖中得到必要的信息是解題關鍵.條形統計圖能清楚地表示出每個項目的數據.20、(1);(2).【解析】
(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據概率的意義解答即可;(2)畫出樹狀圖,然后根據概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.21、(1)見解析;(2)與相切,理由見解析.【解析】
(1)作出AD的垂直平分線,交AB于點O,進而利用AO為半徑求出即可;
(2)利用半徑相等結合角平分線的性質得出OD∥AC,進而求出OD⊥BC,進而得出答案.【詳解】(1)①分別以為圓心,大于的長為半徑作弧,兩弧相交于點和,②作直線,與相交于點,③以為圓心,為半徑作圓,如圖即為所作;(2)與相切,理由如下:連接OD,為半徑,,是等腰三角形,,平分,,,,,,,為半徑,與相切.【點睛】本題主要考查了切線的判定以及線段垂直平分線的作法與性質等知識,掌握切線的判定方法是解題關鍵.22、(1)B點到直線CA的距離是75海里;(2)執法船從A到D航行了(75﹣25)海里.【解析】
(1)過點B作BH⊥CA交CA的延長線于點H,根據三角函數可求BH的長;(2)根據勾股定理可求DH,在Rt△ABH中,根據三角函數可求AH,進一步得到AD的長.【詳解】解:(1)過點B作BH⊥CA交CA的延長線于點H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×=75(海里).答:B點到直線CA的距離是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH==,∴AH=25,∴AD=DH﹣AH=(75﹣25)(海里).答:執法船從A到D航行了(75﹣25)海里.【點睛】本題主要考查了勾股定理的應用,解直角三角形的應用-方向角問題.能合理構造直角三角形,并利用方向角求得三角形內角的大小是解決此題的關鍵.23、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后購買這批粽子比不打折節省了3120元.【解析】分析:(1)設打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根據“打折前,買6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;(2)根據節省錢數=原價購買所需錢數-打折后購買所需錢數,即可求出節省的錢數.詳解:(1)設打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根據題意得:,解得:.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后購買這批粽子比不打折節省了3640元.點睛:本題考查了二元一次方程組的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據數量關系,列式計算.24、(1)拋物線的表達式為y=x2﹣2x﹣2,B點的坐標(﹣1,0);(2)y的取值范圍是﹣3≤y<1.(2)b的取值范圍是﹣<b<.【解析】
(1)、將點A坐標代入求出m的值,然后根據二次函數的性質求出點B的坐標;(2)、將二次函數配成頂點式,然后根據二次函數的增減性得出y的取值范圍;(2)、根據函數經過(-1,0)、(3,2)和(0,-2)、(3,2)分別求出兩個一次函數的解析式,從而得出b的取值范圍.【詳解】(1)∵將A(2,0)代入,得m=1,∴拋物線的表達式為y=-2x-2.令-2x-2=0,解得:x=2或x=-1,∴B點的坐標(-1,0).(2)y=-2x-2=-3.∵當-2<x<1時,y隨x增大而減小,當1≤x<2時,y隨x增大而增大,∴當x=1,y最小=-3.又∵當x=-2,y=1,∴y的取值范圍是-3≤y<1.(2)當直線y=kx+b經過B(-1,0)和點(3,2)時,解析式為y=x+.當直線y=kx+b經過(0,-2)和點(3,2)時,解析式為y=x-2.由函數圖象可知;b的取值范圍是:-2<b<.【點睛】本題主要考查的就是二次函數的性質、一次函數的性質以及函數的交點問題.在解決第二個問題的時候,我們首先必須要明確給出x的取值范圍是否是在對稱軸的一邊還是兩邊,然后根據函數圖形進行求解;對于第三問我們必須能夠根據題意畫出函數圖象,然后根據函數圖象求出取值范圍.在解決二次函數的題目時,畫圖是非常關鍵的基本功.25、(1)見解析;(2)y=4﹣x+(0≤x≤3);(3)當△AGQ與△CEP相似,線段AG的長為2或4﹣.【解析】
(1)先判斷出△BEF'≌△CEF,得出BF'=CF,EF'=EF,進而得出∠BGE=∠EGF,即可得出結論;
(2)先判斷出△BEG∽△CFE進而得出CF=,即可得出結論;
(3)分兩種情況,①△AGQ∽△CEP時,判斷出∠BGE=60°,即可求出BG;
②△AGQ∽△CPE時,判斷出EG∥AC,進而得出△BEG∽△BCA即可得出BG,即可得出結論.【詳解】(1)如圖1,延長FE交AB的延長線于F',∵點E是BC的中點,∴BE=CE=2,∵四邊形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF,∴BF'=CF,EF'=EF,∵∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵∠BEG+∠BGE=90°,∴∠BGE=∠CEF,∵∠EBG=∠C=90°,∴△BEG∽△CFE,∴,由(1)知,BE=CE=2,∵AG=x,∴BG=4﹣x,∴,∴CF=,由(1)知,BF'=CF=,由(1)知,GF'=GF=y,∴y=GF'=BG+BF'=4﹣x+當CF=4時,即:=4,∴x=3,(0≤x≤3),即:y關于x的函數表達式為y=4﹣x+(0≤x≤3);(3)∵AC是正方形ABCD的對角線,∴∠BAC=∠BCA=45°,∵△AGQ與△CEP相似,∴①△AGQ∽△CEP,∴∠AGQ=∠CEP,由(2)知,∠CEP=∠BGE,∴∠AGQ=∠BGE,由(1)知,∠BGE=∠FGE,∴∠AGQ=∠BGQ=∠FGE,∴∠AGQ+∠BGQ+∠FGE=180°,∴∠BGE=60°,∴∠BEG=30°,在Rt△BEG中,BE=2,∴BG=,∴AG=AB﹣BG=4﹣,②△AGQ∽△CPE,∴∠AQG=∠CEP,∵∠CEP=∠BGE=∠FGE,∴∠AQG=∠FGE,∴EG∥AC,∴△BEG∽△BCA,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆現代職業技術學院《材料工程基礎》2023-2024學年第二學期期末試卷
- 2025-2030少女內衣市場發展分析及行業投資戰略研究報告
- 2024屆山東省青島42中重點名校中考數學模擬試題含解析
- 廣東省東莞市寮步鎮信義校2024屆中考沖刺卷數學試題含解析
- 2025車間職工安全培訓考試試題及答案黃金題型
- 25年公司三級安全培訓考試試題答案全套
- 2024-2025項目部管理人員安全培訓考試試題【基礎題】
- 2025年員工安全培訓考試試題附參考答案(完整版)
- 2024-2025新員工入職前安全培訓考試試題有完整答案
- 2024-2025管理人員安全培訓考試試題附完整答案(典優)
- 2024年河北省石家莊市中考生物試題卷(含答案解析)
- 海鮮訂購合同范本
- 2024年安徽省高考生物試卷(真題+答案)
- 高中歷史中外歷史綱要上新教材習題答案
- 新版設計圖紙合同
- 離散數學(上)智慧樹知到期末考試答案章節答案2024年桂林電子科技大學
- 2024年共青團入團積極分子考試題庫及答案
- 水滸林沖人物介紹
- 焦炭單位產品能源消耗限額-編輯說明
- 2024年濰坊市寒亭區小升初語文檢測卷含答案
- 醫院合作共建協議書
評論
0/150
提交評論