




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省蘇州昆山市達標名校2025年初三下學期期初教學質量調研數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.有以下圖形:平行四邊形、矩形、等腰三角形、線段、菱形,其中既是軸對稱圖形又是中心對稱圖形的有()A.5個B.4個C.3個D.2個2.-5的相反數是()A.5 B. C. D.3.在0,﹣2,3,四個數中,最小的數是()A.0 B.﹣2 C.3 D.4.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤45.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角6.2017年牡丹區政府工作報告指出:2012年以來牡丹區經濟社會發展取得顯著成就,綜合實力明顯提升,地區生產總值由156.3億元增加到338億元,年均可比增長11.4%,338億用科學記數法表示為()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×10107.計算的結果是().A. B. C. D.8.在直角坐標平面內,已知點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,那么r的取值范圍為()A. B. C. D.9.如圖,扇形AOB中,OA=2,C為弧AB上的一點,連接AC,BC,如果四邊形AOBC為菱形,則圖中陰影部分的面積為()A. B. C. D.10.“鳳鳴”文學社在學校舉行的圖書共享儀式上互贈圖書,每個同學都把自己的圖書向本組其他成員贈送一本,某組共互贈了210本圖書,如果設該組共有x名同學,那么依題意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=21011.按如圖所示的方法折紙,下面結論正確的個數()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個 B.2個 C.1個 D.4個12.如圖,O為原點,點A的坐標為(3,0),點B的坐標為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.函數的自變量的取值范圍是.14.若將拋物線y=﹣4(x+2)2﹣3圖象向左平移5個單位,再向上平移3個單位得到的拋物線的頂點坐標是_____.15.如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B,C都不重合),現將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設BP=x,BE=y,則下列圖象中,能表示y與x的函數關系的圖象大致是()16.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.17.分解因式:_______18.在線段AB上,點C把線段AB分成兩條線段AC和BC,如果,那么點C叫做線段AB的黃金分割點.若點P是線段MN的黃金分割點,當MN=1時,PM的長是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,20.(6分)我市304國道通遼至霍林郭勒段在修建過程中經過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結果取整數,參考數據≈1.732)21.(6分)如圖,△ABC中,∠C=90°,AC=BC,∠ABC的平分線BD交AC于點D,DE⊥AB于點E.(1)依題意補全圖形;(2)猜想AE與CD的數量關系,并證明.22.(8分)藝術節期間,學校向學生征集書畫作品,楊老師從全校36個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作品的數量進行了統計,制作了兩幅不完整的統計圖.請根據相關信息,回答下列問題:(1)請你將條形統計圖補充完整;并估計全校共征集了_____件作品;(2)如果全校征集的作品中有4件獲得一等獎,其中有3名作者是男生,1名作者是女生,現要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求選取的兩名學生恰好是一男一女的概率.23.(8分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;24.(10分)小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.25.(10分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°,對角線AC,BD相交于點O,動點P從點A出發,以4cm/s的速度,沿A→B的路線向點B運動;過點P作PQ∥BD,與AC相交于點Q,設運動時間為t秒,0<t<1.(1)設四邊形PQCB的面積為S,求S與t的關系式;(2)若點Q關于O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N,當t為何值時,點P、M、N在一直線上?(3)直線PN與AC相交于H點,連接PM,NM,是否存在某一時刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.26.(12分)“食品安全”受到全社會的廣泛關注,我區兼善中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面的兩幅尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為°;(2)請補全條形統計圖;(3)若對食品安全知識達到“了解”程度的學生中,男、女生的比例恰為2:3,現從中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.27.(12分)經過某十字路口的汽車,它可能繼續直行,也可能向左轉或向右轉.如果這三種可能性大小相同,現有兩輛汽車經過這個十字路口.(1)試用樹形圖或列表法中的一種列舉出這兩輛汽車行駛方向所有可能的結果;并計算兩輛汽車都不直行的概率.(2)求至少有一輛汽車向左轉的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】矩形,線段、菱形是軸對稱圖形,也是中心對稱圖形,符合題意;等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;平行四邊形不是軸對稱圖形,是中心對稱圖形,不符合題意.共3個既是軸對稱圖形又是中心對稱圖形.故選C.2、A【解析】由相反數的定義:“只有符號不同的兩個數互為相反數”可知-5的相反數是5.故選A.3、B【解析】
根據實數比較大小的法則進行比較即可.【詳解】∵在這四個數中3>0,>0,-2<0,∴-2最小.故選B.本題考查的是實數的大小比較,即正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小.4、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.5、B【解析】
利用對頂角的性質、平方根的性質、銳角和鈍角的定義分別判斷后即可確定正確的選項.【詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.考查了命題與定理的知識,解題的關鍵是了解對頂角的性質、平方根的性質、銳角和鈍角的定義,難度不大.6、D【解析】
根據科學記數法的定義可得到答案.【詳解】338億=33800000000=,故選D.把一個大于10或者小于1的數表示為的形式,其中1≤|a|<10,這種記數法叫做科學記數法.7、D【解析】
根據同底數冪的乘除法運算進行計算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.本題主要考查同底數冪的乘除運算,解題的關鍵是知道:同底數冪相乘,底數不變,指數相加.8、D【解析】
先求出點M到x軸、y軸的距離,再根據直線和圓的位置關系得出即可.【詳解】解:∵點M的坐標是(4,3),
∴點M到x軸的距離是3,到y軸的距離是4,
∵點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,
∴r的取值范圍是3<r<4,
故選:D.本題考查點的坐標和直線與圓的位置關系,能熟記直線與圓的位置關系的內容是解此題的關鍵.9、D【解析】連接OC,過點A作AD⊥CD于點D,四邊形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等邊三角形,可得∠AOC=∠BOC=60°,故△ACO與△BOC為邊長相等的兩個等邊三角形,再根據銳角三角函數的定義得出AD=OA?sin60°=2×=,因此可求得S陰影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.故選D.點睛:本題考查的是扇形面積的計算,熟記扇形的面積公式及菱形的性質是解答此題的關鍵.10、B【解析】
設全組共有x名同學,那么每名同學送出的圖書是(x?1)本;則總共送出的圖書為x(x?1);又知實際互贈了210本圖書,則x(x?1)=210.故選:B.11、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.12、D【解析】
如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≠1【解析】該題考查分式方程的有關概念根據分式的分母不為0可得X-1≠0,即x≠1那么函數y=的自變量的取值范圍是x≠114、(﹣7,0)【解析】
直接利用平移規律“左加右減,上加下減”得出平移后的解析式進而得出答案.【詳解】∵將拋物線y=-4(x+2)2-3圖象向左平移5個單位,再向上平移3個單位,∴平移后的解析式為:y=-4(x+7)2,故得到的拋物線的頂點坐標是:(-7,0).故答案為(-7,0).此題主要考查了二次函數與幾何變換,正確掌握平移規律是解題關鍵.15、C【解析】
先證明△BPE∽△CDP,再根據相似三角形對應邊成比例列出式子變形可得.【詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點:1.折疊問題;2.相似三角形的判定和性質;3.二次函數的圖象.16、1.【解析】過點B作BE⊥x軸于點E,根據D為OB的中點可知CD是△OBE的中位線,即CD=BE,設A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.17、【解析】=2()=.故答案為.18、【解析】
設PM=x,根據黃金分割的概念列出比例式,計算即可.【詳解】設PM=x,則PN=1-x,
由得,,
化簡得:x2+x-1=0,
解得:x1=,x2=(負值舍去),
所以PM的長為.本題考查的是黃金分割的概念和性質,把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項,叫做把線段AB黃金分割.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)EC=1.【解析】
(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性質可推出∠F=∠BDE,再根據對頂角相等進行等量代換即可推出∠F=∠FDA,于是得到結論;(2)根據解直角三角形和等邊三角形的性質即可得到結論.【詳解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=BD=2,∵AB=AC,∴△ABC是等邊三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.本題主要考查等腰三角形的判定與性質、余角的性質、對頂角的性質等知識點,關鍵根據相關的性質定理,通過等量代換推出∠F=∠FDA,即可推出結論.20、隧道最短為1093米.【解析】【分析】作BD⊥AC于D,利用直角三角形的性質和三角函數解答即可.【詳解】如圖,作BD⊥AC于D,由題意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=,即,∴AD=400(米),在Rt△BCD中,∵tan45°=,即,∴CD=400(米),∴AC=AD+CD=400+400≈1092.8≈1093(米),答:隧道最短為1093米.【點睛】本題考查了解直角三角形的應用,正確添加輔助線構建直角三角形是解題的關鍵.21、(1)見解析;(2)見解析.【解析】
(1)根據題意畫出圖形即可;(2)利用等腰三角形的性質得∠A=45°.則∠ADE=∠A=45°,所以AE=DE,再根據角平分線性質得CD=DE,從而得到AE=CD.【詳解】解:(1)如圖:(2)AE與CD的數量關系為AE=CD.證明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.此題考查等腰三角形的性質,角平分線的性質,解題關鍵在于根據題意作輔助線.22、(1)圖形見解析,216件;(2)【解析】
(1)由B班級的作品數量及其占總數量的比例可得4個班作品總數,再求得D班級的數量,可補全條形圖,再用36乘四個班的平均數即估計全校的作品數;
(2)列表得出所有等可能結果,從中找到一男、一女的結果數,根據概率公式求解可得.【詳解】(1)4個班作品總數為:件,所以D班級作品數量為:36-6-12-10=8;∴估計全校共征集作品×36=324件.
條形圖如圖所示,
(2)男生有3名,分別記為A1,A2,A3,女生記為B,
列表如下:A1A2A3BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B(B,A1)(B,A2)(B,A3)由列表可知,共有12種等可能情況,其中選取的兩名學生恰好是一男一女的有6種.
所以選取的兩名學生恰好是一男一女的概率為.考查了列表法或樹狀圖法求概率以及扇形與條形統計圖的知識.注意掌握扇形統計圖與條形統計圖的對應關系.用到的知識點為:概率=所求情況數與總情況數之比.23、(1)2(2)當x=4時,y最小=88平方米【解析】(1)根據題意得方程解即可;(2)設苗圃園的面積為y,根據題意得到二次函數的解析式y=x(31-2x)=-2x2+31x,根據二次函數的性質求解即可.解:(1)苗圃園與墻平行的一邊長為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①當x=時,S有最大值,S最大=;②當x=4時,S有最小值,S最小=4×(31-22)=88“點睛”此題考查了二次函數、一元二次不等式的實際應用問題,解題的關鍵是根據題意構建二次函數模型,然后根據二次函數的性質求解即可.24、(1)12;(2)1【解析】
(1)根據四只鞋子中右腳鞋有2只,即可得到隨手拿出一只恰好是右腳鞋的概率;(2)依據樹狀圖即可得到共有12種等可能的結果,其中兩只恰好為一雙的情況有4種,進而得出恰好為一雙的概率.【詳解】解:(1)∵四只鞋子中右腳鞋有2只,∴隨手拿出一只,恰好是右腳鞋的概率為24=1故答案為:12(2)畫樹狀圖如下:共有12種等可能的結果,其中兩只恰好為一雙的情況有4種,∴拿出兩只,恰好為一雙的概率為412=1本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數與總情況數之比.25、(1)S=﹣2(0<t<1);(2);(3)見解析.【解析】
(1)如圖1,根據S=S△ABC-S△APQ,代入可得S與t的關系式;
(2)設PM=x,則AM=2x,可得AP=x=4t,計算x的值,根據直角三角形30度角的性質可得AM=2PM=,根據AM=AO+OM,列方程可得t的值;
(3)存在,通過畫圖可知:N在CD上時,直線PN平分四邊形APMN的面積,根據面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如圖2,在Rt△APM中,AP=4t,∵點Q關于O的對稱點為M,∴OM=OQ,設PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當t為秒時,點P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過M作MG⊥PN于G,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025“陰陽合同”的處理原則
- 2025翡翠首飾買賣合同模板
- 2025國際石油工程建設項目合同(中英文對照)
- 2025食品采購合同
- 2025關于軟件升級的服務合同范本
- 2025實習生合同協議書
- 2025保險公司擔保合同樣本2
- 2025年商業地產租賃合同
- 2025年增亮膜項目合作計劃書
- 2025年地質勘查專用設備項目建議書
- 期中模擬卷(新疆專用)-2024-2025學年八年級英語下學期核心素養素質調研模擬練習試題(考試版)A4
- 甲狀旁腺切除術后的護理措施
- 2024慢性鼻竇炎診斷和治療指南解讀課件
- (T8聯考)2025屆高三部分重點中學3月聯合測評生物試卷(含答案詳解)河北版
- 員工入職申請表(完整版)
- T-GDEIIA 56-2024 垂直起降低空航空器起降場基礎設施配置技術要求
- 整本書閱讀《林海雪原》【知識精研】六年級語文下冊 (統編版五四制2024)
- 9《我的戰友邱少云》說課稿-2024-2025學年六年級語文上冊統編版
- 亞朵酒店前臺培訓
- 大學假期安全主題班會課件
- 創業培訓講師手冊
評論
0/150
提交評論