




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
蘭州第一中學2024-2025學年高考數學試題模擬卷(三)考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.2.設平面與平面相交于直線,直線在平面內,直線在平面內,且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件3.已知函數,,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.4.集合中含有的元素個數為()A.4 B.6 C.8 D.125.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.6.對兩個變量進行回歸分析,給出如下一組樣本數據:,,,,下列函數模型中擬合較好的是()A. B. C. D.7.已知定義在上的奇函數,其導函數為,當時,恒有.則不等式的解集為().A. B.C.或 D.或8.若集合,,則()A. B. C. D.9.已知隨機變量服從正態分布,且,則()A. B. C. D.10.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.211.過拋物線C:y2=4x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.12.將函數的圖像向左平移個單位得到函數的圖像,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最小值為______.14.已知集合,,則_________.15.在中,,.若,則_________.16.直線xsinα+y+2=0的傾斜角的取值范圍是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)每年的寒冷天氣都會帶熱“御寒經濟”,以交通業為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網上預約出租車出行,出租車公司的訂單數就會增加.下表是某出租車公司從出租車的訂單數據中抽取的5天的日平均氣溫(單位:℃)與網上預約出租車訂單數(單位:份);日平均氣溫(℃)642網上預約訂單數100135150185210(1)經數據分析,一天內平均氣溫與該出租車公司網約訂單數(份)成線性相關關系,試建立關于的回歸方程,并預測日平均氣溫為時,該出租車公司的網約訂單數;(2)天氣預報未來5天有3天日平均氣溫不高于,若把這5天的預測數據當成真實的數據,根據表格數據,則從這5天中任意選取2天,求恰有1天網約訂單數不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:18.(12分)購買一輛某品牌新能源汽車,在行駛三年后,政府將給予適當金額的購車補貼.某調研機構對擬購買該品牌汽車的消費者,就購車補貼金額的心理預期值進行了抽樣調查,其樣本頻率分布直方圖如圖所示.(1)估計擬購買該品牌汽車的消費群體對購車補貼金額的心理預期值的方差(同一組中的數據用該組區間的中點值作代表);(2)將頻率視為概率,從擬購買該品牌汽車的消費群體中隨機抽取人,記對購車補貼金額的心理預期值高于萬元的人數為,求的分布列和數學期望;(3)統計最近個月該品牌汽車的市場銷售量,得其頻數分布表如下:月份銷售量(萬輛)試預計該品牌汽車在年月份的銷售量約為多少萬輛?附:對于一組樣本數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.19.(12分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設橢圓的離心率為,當點為橢圓的右頂點時,的坐標為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.20.(12分)正項數列的前n項和Sn滿足:(1)求數列的通項公式;(2)令,數列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.21.(12分)如圖,在三棱錐中,,是的中點,點在上,平面,平面平面,為銳角三角形,求證:(1)是的中點;(2)平面平面.22.(10分)在中,內角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.2.A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內,所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.3.C【解析】
對任意的總有恒成立,因為,對恒成立,可得,令,可得,結合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當,當,,故令,得當時,當,當時,故選:C.本題主要考查了根據不等式恒成立求最值問題,解題關鍵是掌握不等式恒成立的解法和導數求函數單調性的解法,考查了分析能力和計算能力,屬于難題.4.B【解析】解:因為集合中的元素表示的是被12整除的正整數,那么可得為1,2,3,4,6,,12故選B5.A【解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.6.D【解析】
作出四個函數的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.本題考查回歸分析,擬合曲線包含或靠近樣本數據的點越多,說明擬合效果好.7.D【解析】
先通過得到原函數為增函數且為偶函數,再利用到軸距離求解不等式即可.【詳解】構造函數,則由題可知,所以在時為增函數;由為奇函數,為奇函數,所以為偶函數;又,即即又為開口向上的偶函數所以,解得或故選:D此題考查根據導函數構造原函數,偶函數解不等式等知識點,屬于較難題目.8.A【解析】
用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.9.C【解析】
根據在關于對稱的區間上概率相等的性質求解.【詳解】,,,.故選:C.本題考查正態分布的應用.掌握正態曲線的性質是解題基礎.隨機變量服從正態分布,則.10.C【解析】
由圖像用分段函數表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C本題考查了定積分的實際應用,考查了學生轉化劃歸,數形結合,數學運算的能力,屬于中檔題.11.C【解析】
聯立方程解得M(3,),根據MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.本題考查了直線和拋物線的位置關系,意在考查學生的計算能力和轉化能力.12.B【解析】
根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可.【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,,當時,取得最小值為,故選:.本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
作出可行域,平移基準直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準直線到處時,取得最小值為.故答案為:本小題主要考查線性規劃求最值,考查數形結合的數學思想方法,屬于基礎題.14.【解析】
根據交集的定義即可寫出答案。【詳解】,,故填本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎題。15.【解析】分析:首先設出相應的直角邊長,利用余弦勾股定理得到相應的斜邊長,之后應用余弦定理得到直角邊長之間的關系,從而應用正切函數的定義,對邊比臨邊,求得對應角的正切值,即可得結果.詳解:根據題意,設,則,根據,得,由勾股定理可得,根據余弦定理可得,化簡整理得,即,解得,所以,故答案是.點睛:該題考查的是有關解三角形的問題,在解題的過程中,注意分析要求對應角的正切值,需要求誰,而題中所給的條件與對應的結果之間有什么樣的連線,設出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應的等量關系,求得最后的結果.16.【解析】因為sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關系得傾斜角范圍是.答案:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),232;(2)【解析】
(1)根據公式代入求解;(2)先列出基本事件空間,再列出要求的事件,最后求概率即可.【詳解】解:(1)由表格可求出代入公式求出,所以,所以當時,.所以可預測日平均氣溫為時該出租車公司的網約訂單數約為232份.(2)記這5天中氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個基本事件,其中恰有1天網約訂單數不低于210份的有,共6個基本事件,所以所求概率,即恰有1天網約訂單數不低于20份的概率為.考查線性回歸系數的求法以及古典概型求概率的方法,中檔題.18.(1)1.7;(2),見解析;(2)2.【解析】
(1)平均數的估計值為每個小矩形組中值乘以小矩形面積的和;(2)易得,由二項分布列的期望公式計算;(3)利用所給公式計算出回歸直線即可解決.【詳解】(1)由頻率分布直方圖可知,消費群體對購車補貼金額的心理預期值的平均數的估計值為,所以方差的估計值為;(2)由頻率分布直方圖可知,消費群體對購車補貼金額的心理預期值高于3萬元的頻率為,則,所以的分布列為,數學期望;(3)將2018年11月至2019年3月的月份數依次編號為1,2,3,4,5,記,,,,,,由散點圖可知,5組樣本數據呈線性相關關系,因為,,,,則,,所以回歸直線方程為,當時,,預計該品牌汽車在年月份的銷售量約為2萬輛.本題考查平均數、方差的估計值、二項分布列及其期望、線性回歸直線方程及其應用,是一個概率與統計的綜合題,本題是一道中檔題.19.(1);(2)不存在,理由見解析【解析】
(1)寫出,根據,斜率乘積為-1,建立等量關系求解離心率;(2)寫出直線AB的方程,根據韋達定理求出點B的坐標,計算出弦長,根據垂直關系同理可得,利用等式即可得解.【詳解】(1)由題可得,過點作直線交橢圓于點,且,直線交軸于點.點為橢圓的右頂點時,的坐標為,即,,化簡得:,即,解得或(舍去),所以;(2)橢圓的方程為,由(1)可得,聯立得:,設B的橫坐標,根據韋達定理,即,,所以,同理可得若存在使得成立,則,化簡得:,,此方程無解,所以不存在使得成立.此題考查求橢圓離心率,根據直線與橢圓的位置關系解決弦長問題,關鍵在于熟練掌握解析幾何常用方法,尤其是韋達定理在解決解析幾何問題中的應用.20.(1)(2)見解析【解析】
(1)因為數列的前項和滿足:,所以當時,,即解得或,因為數列都是正項,所以,因為,所以,解得或,因為數列都是正項,所以,當時,有,所以,解得,當時,,符合所以數列的通項公式,;(2)因為,所以,所以數列的前項和為:,當時,有,所以,所以對于任意,數列的前項和.21.(1)證明見解析;(2)證明見解析;【解析】
(1)推導出,由是的中點,能證明是有中點.(2)作于點,推導出平面,從而,由,能證明平面,由此能證明平面平面.【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025部門級安全培訓考試試題標準卷
- 2024-2025車間安全培訓考試試題及參考答案(模擬題)
- 2024-2025安全培訓考試試題【綜合卷】
- 【部編版】四年級語文下冊習作《故事新編》精美課件
- 2025鋼筋班組承包合同
- 2025農產品采購合同樣本協議
- 2025上海賽寶網絡科技發展有限公司合同代理協議匯編
- 2025《設備購銷合同模板》
- 2025年合成材料抗氧化劑項目建議書
- 2025二手房屋買賣合同官方版空白
- DB3301∕T 0451-2024 醫學美容機構電子病歷系統技術規范
- 《大國浮沉500年:經濟和地理背后的世界史》記錄
- 水工維護初級工技能鑒定理論考試題庫(含答案)
- 運維項目進度計劃
- 商場中央空調租賃協議模板
- 十八項核心制度
- 浙江省杭州市2023-2024學年六年級下學期期中模擬測試數學試卷(人教版)
- 國家開放大學《Python語言基礎》實驗4:條件分支結構基本應用參考答案
- OTA代運營協議文檔
- 內分泌科常見急危重癥搶救流程
- 污染源權重分析報告
評論
0/150
提交評論