四川省成都新都區(qū)七校聯(lián)考2025屆初三下學(xué)期5月練習(xí)數(shù)學(xué)試題含解析_第1頁
四川省成都新都區(qū)七校聯(lián)考2025屆初三下學(xué)期5月練習(xí)數(shù)學(xué)試題含解析_第2頁
四川省成都新都區(qū)七校聯(lián)考2025屆初三下學(xué)期5月練習(xí)數(shù)學(xué)試題含解析_第3頁
四川省成都新都區(qū)七校聯(lián)考2025屆初三下學(xué)期5月練習(xí)數(shù)學(xué)試題含解析_第4頁
四川省成都新都區(qū)七校聯(lián)考2025屆初三下學(xué)期5月練習(xí)數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省成都新都區(qū)七校聯(lián)考2025屆初三下學(xué)期5月練習(xí)數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,夜晚,小亮從點A經(jīng)過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關(guān)系的圖象大致為()A. B.C. D.2.在下列函數(shù)中,其圖象與x軸沒有交點的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=3.用尺現(xiàn)作圖的方法在一個平行四邊形內(nèi)作菱形,下列作法錯誤的是()A. B. C. D.4.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤45.反比例函數(shù)y=的圖象如圖所示,以下結(jié)論:①常數(shù)m<﹣1;②在每個象限內(nèi),y隨x的增大而增大;③若點A(﹣1,h),B(2,k)在圖象上,則h<k;④若點P(x,y)在上,則點P′(﹣x,﹣y)也在圖象.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.46.若⊙O的半徑為5cm,OA=4cm,則點A與⊙O的位置關(guān)系是()A.點A在⊙O內(nèi) B.點A在⊙O上 C.點A在⊙O外 D.內(nèi)含7.的相反數(shù)是()A. B.- C. D.-8.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學(xué)記數(shù)法表示應(yīng)為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1059.如圖,在直角坐標系中,有兩點A(6,3)、B(6,0).以原點O為位似中心,相似比為,在第一象限內(nèi)把線段AB縮小后得到線段CD,則點C的坐標為()A.(2,1) B.(2,0) C.(3,3) D.(3,1)10.下列等式正確的是()A.(a+b)2=a2+b2 B.3n+3n+3n=3n+1C.a(chǎn)3+a3=a6 D.(ab)2=a11.如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:①當(dāng)0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當(dāng)△BPQ與△BEA相似時,t=14.1.其中正確結(jié)論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤12.如果菱形的一邊長是8,那么它的周長是()A.16 B.32 C.163 D.323二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,一扇形紙扇完全打開后,外側(cè)兩竹條AB和AC的夾角為120°,AB長為25cm,貼紙部分的寬BD為15cm,若紙扇兩面貼紙,則貼紙的面積為_____.(結(jié)果保留π)14.同圓中,已知弧AB所對的圓心角是100°,則弧AB所對的圓周角是_____.15.分解因式:2a4﹣4a2+2=_____.16.如圖,菱形的邊,,是上一點,,是邊上一動點,將梯形沿直線折疊,的對應(yīng)點為,當(dāng)?shù)拈L度最小時,的長為__________.17.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結(jié)果保留)18.如圖,某景區(qū)的兩個景點A、B處于同一水平地面上、一架無人機在空中沿MN方向水平飛行進行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當(dāng)無人機飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD為100米,則兩景點A、B間的距離為__米(結(jié)果保留根號).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖①,在四邊形ABCD中,AC⊥BD于點E,AB=AC=BD,點M為BC中點,N為線段AM上的點,且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時,求線段BC的長;(3)如圖②,若點F為AB的中點,連結(jié)FN、FM,求證:△MFN∽△BDC.20.(6分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.21.(6分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)(x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達式.22.(8分)已知拋物線經(jīng)過點,.把拋物線與線段圍成的封閉圖形記作.(1)求此拋物線的解析式;(2)點為圖形中的拋物線上一點,且點的橫坐標為,過點作軸,交線段于點.當(dāng)為等腰直角三角形時,求的值;(3)點是直線上一點,且點的橫坐標為,以線段為邊作正方形,且使正方形與圖形在直線的同側(cè),當(dāng),兩點中只有一個點在圖形的內(nèi)部時,請直接寫出的取值范圍.23.(8分)某區(qū)教育局為了解今年九年級學(xué)生體育測試情況,隨機抽查了某班學(xué)生的體育測試成績?yōu)闃颖荆碅、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下(1)樣本中D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是;(2)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是;(3)請把條形統(tǒng)計圖補充完整;(4)若該校九年級有500名學(xué)生,請你用此樣本估計體育測試中A級和B級的學(xué)生人數(shù)之和.24.(10分)已知:如圖,梯形ABCD中,AD∥BC,DE∥AB,與對角線交于點,∥,且FG=EF.(1)求證:四邊形是菱形;(2)聯(lián)結(jié)AE,又知AC⊥ED,求證:.25.(10分)如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)26.(12分)如圖,在平面直角坐標系中,函數(shù)的圖象與直線交于點A(3,m).求k、m的值;已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù)的圖象于點N.①當(dāng)n=1時,判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.27.(12分)濟南某中學(xué)在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請根據(jù)以上信息,回答下列問題:(l)楊老師采用的調(diào)查方式是______(填“普查”或“抽樣調(diào)查”);(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù)______.(3)請估計全校共征集作品的件數(shù).(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】設(shè)身高GE=h,CF=l,AF=a,當(dāng)x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數(shù),∴自變量x的系數(shù)是固定值,∴這個函數(shù)圖象肯定是一次函數(shù)圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點,進而隨著離燈光的越來越遠而影長將變大.故選A.2、D【解析】

依據(jù)一次函數(shù)的圖象,二次函數(shù)的圖象以及反比例函數(shù)的圖象進行判斷即可.【詳解】A.正比例函數(shù)y=2x與x軸交于(0,0),不合題意;B.一次函數(shù)y=-3x+1與x軸交于(,0),不合題意;C.二次函數(shù)y=x2與x軸交于(0,0),不合題意;D.反比例函數(shù)y=與x軸沒有交點,符合題意;故選D.3、A【解析】

根據(jù)菱形的判定方法一一判定即可【詳解】作的是角平分線,只能說明四邊形ABCD是平行四邊形,故A符合題意B、作的是連接AC,分別做兩個角與已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四邊形ABCD為菱形,B不符合題意C、由輔助線可知AD=AB=BC,又AD∥BC,所以四邊形ABCD為菱形,C不符合題意D、作的是BD垂直平分線,由平行四邊形中心對稱性質(zhì)可知AC與BD互相平分且垂直,得到四邊形ABCD是菱形,D不符合題意故選A本題考查平行四邊形的判定,能理解每個圖的作法是本題解題關(guān)鍵4、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.5、B【解析】

根據(jù)反比例函數(shù)的圖象的位置確定其比例系數(shù)的符號,利用反比例函數(shù)的性質(zhì)進行判斷即可.【詳解】解:∵反比例函數(shù)的圖象位于一三象限,∴m>0故①錯誤;當(dāng)反比例函數(shù)的圖象位于一三象限時,在每一象限內(nèi),y隨x的增大而減小,故②錯誤;將A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,∵m>0∴h<k故③正確;將P(x,y)代入y=得到m=xy,將P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上故④正確,故選:B.本題考查了反比例函數(shù)的性質(zhì),牢記反比例函數(shù)的比例系數(shù)的符號與其圖象的關(guān)系是解決本題的關(guān)鍵.6、A【解析】

直接利用點與圓的位置關(guān)系進而得出答案.【詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.此題主要考查了點與圓的位置關(guān)系,正確①點P在圓外?d>r,②點P在圓上?d=r,③點P在圓內(nèi)?d<r是解題關(guān)鍵.7、B【解析】∵+(﹣)=0,∴的相反數(shù)是﹣.故選B.8、C【解析】試題分析:28000=1.1×1.故選C.考點:科學(xué)記數(shù)法—表示較大的數(shù).9、A【解析】

根據(jù)位似變換的性質(zhì)可知,△ODC∽△OBA,相似比是,根據(jù)已知數(shù)據(jù)可以求出點C的坐標.【詳解】由題意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴點C的坐標為:(2,1),故選A.本題考查的是位似變換,掌握位似變換與相似的關(guān)系是解題的關(guān)鍵,注意位似比與相似比的關(guān)系的應(yīng)用.10、B【解析】

(1)根據(jù)完全平方公式進行解答;(2)根據(jù)合并同類項進行解答;(3)根據(jù)合并同類項進行解答;(4)根據(jù)冪的乘方進行解答.【詳解】解:A、(a+b)2=a2+2ab+b2,故此選項錯誤;B、3n+3n+3n=3n+1,正確;C、a3+a3=2a3,故此選項錯誤;D、(ab)2=a2b,故此選項錯誤;故選B.本題考查整數(shù)指數(shù)冪和整式的運算,解題關(guān)鍵是掌握各自性質(zhì).11、D【解析】

根據(jù)題意,得到P、Q分別同時到達D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個點的相對位置判斷點P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【詳解】解:由圖象可知,點Q到達C時,點P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當(dāng)14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點P運行路徑的交點是P,滿足△ABP是等腰三角形此時,滿足條件的點有4個,故④錯誤.∵△BEA為直角三角形∴只有點P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當(dāng)或時,△BPQ與△BEA相似分別將數(shù)值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.本題是動點問題的函數(shù)圖象探究題,考查了三角形相似判定、等腰三角形判定,應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想.12、B【解析】

根據(jù)菱形的四邊相等,可得周長【詳解】菱形的四邊相等∴菱形的周長=4×8=32故選B.本題考查了菱形的性質(zhì),并靈活掌握及運用菱形的性質(zhì)二、填空題:(本大題共6個小題,每小題4分,共24分.)13、πcm1.【解析】

求出AD,先分別求出兩個扇形的面積,再求出答案即可.【詳解】解:∵AB長為15cm,貼紙部分的寬BD為15cm,∴AD=10cm,∴貼紙的面積為S=S扇形ABC﹣S扇形ADE=(cm1),故答案為πcm1.本題考查了扇形的面積計算,能熟記扇形的面積公式是解此題的關(guān)鍵.14、50°【解析】【分析】直接利用圓周角定理進行求解即可.【詳解】∵弧AB所對的圓心角是100°,∴弧AB所對的圓周角為50°,故答案為:50°.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.15、1(a+1)1(a﹣1)1.【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案為:1(a+1)1(a﹣1)1本題主要考查提取公因式與公式法的綜合運用,關(guān)鍵要掌握提取公因式之后,根據(jù)多項式的項數(shù)來選擇方法繼續(xù)因式分解,如果多項式是兩項,則考慮用平方差公式;如果是三項,則考慮用完全平方公式.16、【解析】如圖所示,過點作,交于點.在菱形中,∵,且,所以為等邊三角形,.根據(jù)“等腰三角形三線合一”可得,因為,所以.在中,根據(jù)勾股定理可得,.因為梯形沿直線折疊,點的對應(yīng)點為,根據(jù)翻折的性質(zhì)可得,點在以點為圓心,為半徑的弧上,則點在上時,的長度最小,此時,因為.所以,所以,所以.點睛:A′為四邊形ADQP沿PQ翻折得到,由題目中可知AP長為定值,即A′點在以P為圓心、AP為半徑的圓上,當(dāng)C、A′、P在同一條直線時CA′取最值,由此結(jié)合直角三角形勾股定理、等邊三角形性質(zhì)求得此時CQ的長度即可.17、8π.【解析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.18、100+100【解析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,繼而可得∠DCB=60°,從而可得AD=CD=100米,DB=100米,再根據(jù)AB=AD+DB計算即可得.【詳解】∵MN//AB,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,DB=CD?tan60°=CD=100米,∴AB=AD+DB=100+100(米),故答案為:100+100.【點睛】本題考查了解直角三角形的應(yīng)用﹣﹣仰角俯角問題,解題的關(guān)鍵是借助俯角構(gòu)造直角三角形并解直角三角形.注意方程思想與數(shù)形結(jié)合思想的應(yīng)用.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2);(3)證明見解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線合一知AM⊥BC,從而根據(jù)∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN為等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得證;(2)設(shè)BM=CM=MN=a,知DN=BC=2a,證△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,從而得出答案;(3)F是AB的中點知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得證.詳解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M為BC的中點,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN為等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)設(shè)BM=CM=MN=a,∵四邊形DNBC是平行四邊形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(負值舍去),∴BC=2a=;(3)∵F是AB的中點,∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.點睛:本題主要考查相似形的綜合問題,解題的關(guān)鍵是掌握等腰三角形三線合一的性質(zhì)、直角三角形和平行四邊形的性質(zhì)及全等三角形與相似三角形的判定與性質(zhì)等知識點.20、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質(zhì),即可判定△FAE≌△CDE,即可得到CD=FA,再根據(jù)CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據(jù)E是AD的中點,可得AD=2CD,依據(jù)AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質(zhì)以及平行四邊形的判定與性質(zhì),要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或?qū)堑奈恢蒙希ㄟ^證明四邊形是平行四邊形達到上述目的.21、(1)-6;(2).【解析】

(1)由點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標,作DE⊥BC.延長DE交AB于點F,證△DBE≌△FBE得DE=FE=4,即可知點F(2,1),再利用待定系數(shù)法求解可得.【詳解】解:(1)∵點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點B(﹣2,3)、D(﹣6,1),如圖,過點D作DE⊥BC于點E,延長DE交AB于點F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點F(2,1),將點B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.本題主要考查了反比例函數(shù)與一次函數(shù)的綜合問題,解題的關(guān)鍵是能借助全等三角形確定一些相關(guān)線段的長.22、(1);(2)-2或-1;(3)-1≤n<1或1<n≤3.【解析】

(1)把點,代入拋物線得關(guān)于a,b的二元一次方程組,解出這個方程組即可;(2)根據(jù)題意畫出圖形,分三種情況進行討論;(3)作出圖形,把其中一點恰好在拋物線上時算出,再確定其取值范圍.【詳解】解:(1)依題意,得:解得:∴此拋物線的解析式;(2)設(shè)直線AB的解析式為y=kx+b,依題意得:解得:∴直線AB的解析式為y=-x.∵點P的橫坐標為m,且在拋物線上,∴點P的坐標為(m,)∵軸,且點Q有線段AB上,∴點Q的坐標為(m,-m)①當(dāng)PQ=AP時,如圖,∵∠APQ=90°,軸,∴解得,m=-2或m=1(舍去)②當(dāng)AQ=AP時,如圖,過點A作AC⊥PQ于C,∵為等腰直角三角形,∴2AC=PQ即m=1(舍去)或m=-1.綜上所述,當(dāng)為等腰直角三角形時,求的值是-2惑-1.;(3)①如圖,當(dāng)n<1時,依題意可知C,D的橫坐標相同,CE=2(1-n)∴點E的坐標為(n,n-2)當(dāng)點E恰好在拋物線上時,解得,n=-1.∴此時n的取值范圍-1≤n<1.②如圖,當(dāng)n>1時,依題可知點E的坐標為(2-n,-n)當(dāng)點E在拋物線上時,解得,n=3或n=1.∵n>1.∴n=3.∴此時n的取值范圍1<n≤3.綜上所述,n的取值范圍為-1≤n<1或1<n≤3.本題主要考查了二次函數(shù)與幾何圖形的綜合應(yīng)用,掌握相關(guān)幾何圖形的性質(zhì)和二次函數(shù)的性質(zhì)是解題的關(guān)鍵.23、(1)10%;(2)72;(3)5,見解析;(4)330.【解析】

解:(1)根據(jù)題意得:

D級的學(xué)生人數(shù)占全班人數(shù)的百分比是:

1-20%-46%-24%=10%;

(2)A級所在的扇形的圓心角度數(shù)是:20%×360°=72°;

(3)∵A等人數(shù)為10人,所占比例為20%,

∴抽查的學(xué)生數(shù)=10÷20%=50(人),

∴D級的學(xué)生人數(shù)是50×10%=5(人),

補圖如下:

(4)根據(jù)題意得:

體育測試中A級和B級的學(xué)生人數(shù)之和是:500×(20%+46%)=330(名),

答:體育測試中A級和B級的學(xué)生人數(shù)之和是330名.本題考查統(tǒng)計的知識,要求考生會識別條形統(tǒng)計圖和扇形統(tǒng)計圖.24、(1)見解析;(2)見解析【解析】分析:(1)由兩組對邊分別平行的四邊形是平行四邊形,得到是平行四邊形.再由平行線分線段成比例定理得到:,,=,即可得到結(jié)論;(2)連接,與交于點.由菱形的性質(zhì)得到⊥,進而得到,,即有,得到△∽△,由相似三角形的性質(zhì)即可得到結(jié)論.詳解:(1)∵∥∥,∴四邊形是平行四邊形.∵∥,∴.同理.得:=∵,∴.∴四邊形是菱形.(2)連接,與交于點.∵四邊形是菱形,∴⊥.得.同理.∴.又∵是公共角,∴△∽△.∴.∴.點睛:本題主要考查了菱形的判定和性質(zhì)以及相似三角形的判定與性質(zhì).靈活運用菱形的判定與性質(zhì)是解題的關(guān)鍵.25、52【解析】

根據(jù)樓高和山高可求出EF,繼而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根據(jù)CF=BD可建立方程,解出即可.【詳解】如圖,過點C作CF⊥AB于點F.設(shè)塔高AE=x,由題意得,EF=BE?CD=56?27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,則,在Rt△ABD中,∠ADB=45°,AB=x+56,則BD=AB=x+56,∵CF=BD,∴,解得:x=52,答:該鐵塔的高AE為52米.本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是構(gòu)造

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論