




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省江陰南閘實驗校2025屆下學(xué)期初三數(shù)學(xué)試題5月月考試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.今年,我省啟動了“關(guān)愛留守兒童工程”.某村小為了了解各年級留守兒童的數(shù)量,對一到六年級留守兒童數(shù)量進(jìn)行了統(tǒng)計,得到每個年級的留守兒童人數(shù)分別為10,15,10,17,18,1.對于這組數(shù)據(jù),下列說法錯誤的是()A.平均數(shù)是15 B.眾數(shù)是10 C.中位數(shù)是17 D.方差是2.已知二次函數(shù)y=﹣(x﹣h)2+1(為常數(shù)),在自變量x的值滿足1≤x≤3的情況下,與其對應(yīng)的函數(shù)值y的最大值為﹣5,則h的值為()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+3.如圖,已知直線AD是⊙O的切線,點A為切點,OD交⊙O于點B,點C在⊙O上,且∠ODA=36°,則∠ACB的度數(shù)為()A.54°B.36°C.30°D.27°4.如圖,線段AB是直線y=4x+2的一部分,點A是直線與y軸的交點,點B的縱坐標(biāo)為6,曲線BC是雙曲線y=的一部分,點C的橫坐標(biāo)為6,由點C開始不斷重復(fù)“A﹣B﹣C”的過程,形成一組波浪線.點P(2017,m)與Q(2020,n)均在該波浪線上,分別過P、Q兩點向x軸作垂線段,垂足為點D和E,則四邊形PDEQ的面積是()A.10 B. C. D.155.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數(shù)為(
)A.35° B.45° C.55° D.65°6.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點,將△ABC沿DE折疊,使點B落在AC邊上點F處,并且DF∥BC,若CF=3,BC=9,則AB的長是()A. B.15 C. D.97.下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm8.如果m的倒數(shù)是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20189.的算術(shù)平方根為()A. B. C. D.10.的絕對值是()A.8 B.﹣8 C. D.﹣11.若a+b=3,,則ab等于()A.2 B.1 C.﹣2 D.﹣112.下列各圖中a、b、c為三角形的邊長,則甲、乙、丙三個三角形和左側(cè)△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙二、填空題:(本大題共6個小題,每小題4分,共24分.)13.布袋中裝有2個紅球和5個白球,它們除顏色外其它都相同.如果從這個布袋里隨機摸出一個球,那么所摸到的球恰好為紅球的概率是
________.14.如圖,在平面直角坐標(biāo)系中,已知點A(﹣4,0)、B(0,3),對△AOB連續(xù)作旋轉(zhuǎn)變換依次得到三角形(1)、(2)、(3)、(4)、…,則第(5)個三角形的直角頂點的坐標(biāo)是_____,第(2018)個三角形的直角頂點的坐標(biāo)是______.15.如圖,直線a∥b,正方形ABCD的頂點A、B分別在直線a、b上.若∠2=73°,則∠1=.16.規(guī)定用符號表示一個實數(shù)的整數(shù)部分,例如:,.按此規(guī)定,的值為________.17.豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數(shù)關(guān)系式為h=﹣2t2+mt+,若小球經(jīng)過秒落地,則小球在上拋的過程中,第____秒時離地面最高.18.現(xiàn)有三張分別標(biāo)有數(shù)字2、3、4的卡片,它們除了數(shù)字外完全相同,把卡片背面朝上洗勻,從中任意抽取一張,將上面的數(shù)字記為a(不放回);從剩下的卡片中再任意抽取一張,將上面的數(shù)字記為b,則點(a,b)在直線圖象上的概率為__.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.20.(6分)在矩形ABCD中,兩條對角線相交于O,∠AOB=60°,AB=2,求AD的長.21.(6分)如圖矩形ABCD中AB=6,AD=4,點P為AB上一點,把矩形ABCD沿過P點的直線l折疊,使D點落在BC邊上的D′處,直線l與CD邊交于Q點.(1)在圖(1)中利用無刻度的直尺和圓規(guī)作出直線l.(保留作圖痕跡,不寫作法和理由)(2)若PD′⊥PD,①求線段AP的長度;②求sin∠QD′D.22.(8分)如圖,直線l是線段MN的垂直平分線,交線段MN于點O,在MN下方的直線l上取一點P,連接PN,以線段PN為邊,在PN上方作正方形NPAB,射線MA交直線l于點C,連接BC.(1)設(shè)∠ONP=α,求∠AMN的度數(shù);(2)寫出線段AM、BC之間的等量關(guān)系,并證明.23.(8分)學(xué)校決定從甲、乙兩名同學(xué)中選拔一人參加“誦讀經(jīng)典”大賽,在相同的測試條件下,甲、乙兩人5次測試成績(單位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.請回答下列問題:甲成績的中位數(shù)是______,乙成績的眾數(shù)是______;經(jīng)計算知,.請你求出甲的方差,并從平均數(shù)和方差的角度推薦參加比賽的合適人選.24.(10分)如圖,△ABC中,點D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的長.25.(10分)小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的作法是這樣的:如圖:(1)利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;(2)利用兩個三角板,分別過點M,N畫OM,ON的垂線,交點為P;(3)畫射線OP.則射線OP為∠AOB的平分線.請寫出小林的畫法的依據(jù)______.26.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)的圖像交于點A,(1)求點A的坐標(biāo);(2)設(shè)x軸上一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交和的圖像于點B、C,連接OC,若BC=OA,求△OBC的面積.27.(12分)﹣(﹣1)2018+﹣()﹣1
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
解:中位數(shù)應(yīng)該是15和17的平均數(shù)16,故C選項錯誤,其他選擇正確.故選C.本題考查求中位數(shù),眾數(shù),方差,理解相關(guān)概念是本題的解題關(guān)鍵.2、C【解析】
∵當(dāng)x<h時,y隨x的增大而增大,當(dāng)x>h時,y隨x的增大而減小,∴①若h<1≤x≤3,x=1時,y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,當(dāng)x=3時,y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).綜上,h的值為1-或3+,故選C.點睛:本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的增減性和最值分兩種情況討論是解題的關(guān)鍵.3、D【解析】解:∵AD為圓O的切線,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD與∠ACB都對,∴∠ACB=∠AOD=27°.故選D.4、C【解析】
A,C之間的距離為6,點Q與點P的水平距離為3,進(jìn)而得到A,B之間的水平距離為1,且k=6,根據(jù)四邊形PDEQ的面積為,即可得到四邊形PDEQ的面積.【詳解】A,C之間的距離為6,2017÷6=336…1,故點P離x軸的距離與點B離x軸的距離相同,在y=4x+2中,當(dāng)y=6時,x=1,即點P離x軸的距離為6,∴m=6,2020﹣2017=3,故點Q與點P的水平距離為3,∵解得k=6,雙曲線1+3=4,即點Q離x軸的距離為,∴∵四邊形PDEQ的面積是.故選:C.考查了反比例函數(shù)的圖象與性質(zhì),平行四邊形的面積,綜合性比較強,難度較大.5、C【解析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.6、C【解析】
由折疊得到EB=EF,∠B=∠DFE,根據(jù)CE+EB=9,得到CE+EF=9,設(shè)EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EF與CE的長,由FD與BC平行,得到一對內(nèi)錯角相等,等量代換得到一對同位角相等,進(jìn)而確定出EF與AB平行,由平行得比例,即可求出AB的長.【詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設(shè)EF=EB=x,得到CE=BC-EB=9-x,根據(jù)勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.此題考查了翻折變換(折疊問題),涉及的知識有:勾股定理,平行線的判定與性質(zhì),平行線分線段成比例,熟練掌握折疊的性質(zhì)是解本題的關(guān)鍵.7、C【解析】
根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.本題考查了三角形的三邊關(guān)系,關(guān)鍵是靈活運用三角形三邊關(guān)系.8、A【解析】
因為兩個數(shù)相乘之積為1,則這兩個數(shù)互為倒數(shù),如果m的倒數(shù)是﹣1,則m=-1,然后再代入m2018計算即可.【詳解】因為m的倒數(shù)是﹣1,所以m=-1,所以m2018=(-1)2018=1,故選A.本題主要考查倒數(shù)的概念和乘方運算,解決本題的關(guān)鍵是要熟練掌握倒數(shù)的概念和乘方運算法則.9、B【解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術(shù)平方根即可.詳解:∵=2,而2的算術(shù)平方根是,∴的算術(shù)平方根是,故選B.點睛:此題主要考查了算術(shù)平方根的定義,解題時應(yīng)先明確是求哪個數(shù)的算術(shù)平方根,否則容易出現(xiàn)選A的錯誤.10、C【解析】
根據(jù)絕對值的計算法則解答.如果用字母a表示有理數(shù),則數(shù)a絕對值要由字母a本身的取值來確定:①當(dāng)a是正有理數(shù)時,a的絕對值是它本身a;②當(dāng)a是負(fù)有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;③當(dāng)a是零時,a的絕對值是零.【詳解】解:.故選此題重點考查學(xué)生對絕對值的理解,熟練掌握絕對值的計算方法是解題的關(guān)鍵.11、B【解析】
∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故選B.考點:完全平方公式;整體代入.12、B【解析】分析:根據(jù)三角形全等的判定方法得出乙和丙與△ABC全等,甲與△ABC不全等.詳解:乙和△ABC全等;理由如下:在△ABC和圖乙的三角形中,滿足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和圖丙的三角形中,滿足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲與△ABC全等;故選B.點睛:本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】試題解析:∵一個布袋里裝有2個紅球和5個白球,∴摸出一個球摸到紅球的概率為:22+5考點:概率公式.14、(16,)(8068,)【解析】
利用勾股定理列式求出AB的長,再根據(jù)圖形寫出第(5)個三角形的直角頂點的坐標(biāo)即可;觀察圖形不難發(fā)現(xiàn),每3個三角形為一個循環(huán)組依次循環(huán),用2018除以3,根據(jù)商和余數(shù)的情況確定出第(2018)個三角形的直角頂點到原點O的距離,然后寫出坐標(biāo)即可.【詳解】∵點A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴第(2)個三角形的直角頂點的坐標(biāo)是(4,);∵5÷3=1余2,∴第(5)個三角形的直角頂點的坐標(biāo)是(16,),∵2018÷3=672余2,∴第(2018)個三角形是第672組的第二個直角三角形,其直角頂點與第672組的第二個直角三角形頂點重合,∴第(2018)個三角形的直角頂點的坐標(biāo)是(8068,).故答案為:(16,);(8068,)本題考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),解題的關(guān)鍵是根據(jù)題意找出每3個三角形為一個循環(huán)組依次循環(huán).15、107°【解析】
過C作d∥a,得到a∥b∥d,構(gòu)造內(nèi)錯角,根據(jù)兩直線平行,內(nèi)錯角相等,及平角的定義,即可得到∠1的度數(shù).【詳解】過C作d∥a,∴a∥b,∴a∥b∥d,∵四邊形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案為107°.本題考查了平行線的性質(zhì)以及正方形性質(zhì)的運用,解題時注意:兩直線平行,內(nèi)錯角相等.解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角.16、4【解析】
根據(jù)規(guī)定,取的整數(shù)部分即可.【詳解】∵,∴∴整數(shù)部分為4.本題考查無理數(shù)的估值,熟記方法是關(guān)鍵.17、.【解析】
首先根據(jù)題意得出m的值,進(jìn)而求出t=﹣的值即可求得答案.【詳解】∵豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數(shù)關(guān)系式為h=﹣2t2+mt+,小球經(jīng)過秒落地,∴t=時,h=0,則0=﹣2×()2+m+,解得:m=,當(dāng)t=﹣=﹣時,h最大,故答案為:.本題考查了二次函數(shù)的應(yīng)用,正確得出m的值是解題關(guān)鍵.18、【解析】
根據(jù)題意列出圖表,即可表示(a,b)所有可能出現(xiàn)的結(jié)果,根據(jù)一次函數(shù)的性質(zhì)求出在圖象上的點,即可得出答案.【詳解】畫樹狀圖得:
∵共有6種等可能的結(jié)果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直線圖象上的只有(3,2),
∴點(a,b)在圖象上的概率為.本題考查了用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意此題屬于不放回實驗.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、﹣2【解析】【分析】先利用完全平方公式、平方差公式進(jìn)行展開,然后合并同類項,最后代入x、y的值進(jìn)行計算即可得.【詳解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1=x1+2xy+2y1﹣2y1+x1﹣1x1=2xy,當(dāng)x=+1,y=﹣1時,原式=2×(+1)×(﹣1)=2×(3﹣2)=﹣2.【點睛】本題考查了整式的混合運算——化簡求值,熟練掌握完全平方公式、平方差公式是解題的關(guān)鍵.20、【解析】試題分析:由矩形的對角線相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等邊三角形,從而得到OB=OA=2,則BD=4,最后在Rt△ABD中,由勾股定理可解得AD的長.試題解析:∵四邊形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等邊三角形,∴OB=OA=2,∴BD=2OB=4,在Rt△ABD中∴AD===.21、(1)見解析;(2)【解析】
(1)根據(jù)題意作出圖形即可;(2)由(1)知,PD=PD′,根據(jù)余角的性質(zhì)得到∠ADP=∠BPD′,根據(jù)全等三角形的性質(zhì)得到AD=PB=4,得到AP=2;根據(jù)勾股定理得到PD==2,根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】(1)連接PD,以P為圓心,PD為半徑畫弧交BC于D′,過P作DD′的垂線交CD于Q,則直線PQ即為所求;(2)由(1)知,PD=PD′,∵PD′⊥PD,∴∠DPD′=90°,∵∠A=90°,∴∠ADP+∠APD=∠APD+∠BPD′=90°,∴∠ADP=∠BPD′,在△ADP與△BPD′中,,∴△ADP≌△BPD′,∴AD=PB=4,AP=BD′∵PB=AB﹣AP=6﹣AP=4,∴AP=2;∴PD==2,BD′=2∴CD′=BC-BD′=4-2=2∵PD=PD′,PD⊥PD′,∵DD′=PD=2,∵PQ垂直平分DD′,連接QD′則DQ=D′Q∴∠QD′D=∠QDD′∴sin∠QD′D=sin∠QDD′=.本題考查了作圖-軸對稱變換,矩形的性質(zhì),折疊的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.22、(1)45°(2),理由見解析【解析】
(1)由線段的垂直平分線的性質(zhì)可得PM=PN,PO⊥MN,由等腰三角形的性質(zhì)可得∠PMN=∠PNM=α,由正方形的性質(zhì)可得AP=PN,∠APN=90°,可得∠APO=α,由三角形內(nèi)角和定理可求∠AMN的度數(shù);(2)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得,,∠MNC=∠ANB=45°,可證△CBN∽△MAN,可得.【詳解】解:(1)如圖,連接MP,∵直線l是線段MN的垂直平分線,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四邊形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)理由如下:如圖,連接AN,CN,∵直線l是線段MN的垂直平分線,∴CM=CN,∴∠CMN=∠CNM=45°,∴∠MCN=90°∴,∵四邊形APNB是正方形∴∠ANB=∠BAN=45°∴,∠MNC=∠ANB=45°∴∠ANM=∠BNC又∵∴△CBN∽△MAN∴∴本題考查了正方形的性質(zhì),線段垂直平分線的性質(zhì),相似三角形的判定和性質(zhì),添加恰當(dāng)輔助線構(gòu)造相似三角形是本題的關(guān)鍵.23、(1)83,81;(2),推薦甲去參加比賽.【解析】
(1)根據(jù)中位數(shù)和眾數(shù)分別求解可得;(2)先計算出甲的平均數(shù)和方差,再根據(jù)方差的意義判別即可得.【詳解】(1)甲成績的中位數(shù)是83分,乙成績的眾數(shù)是81分,故答案為:83分、81分;(2),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025公司安全管理人員安全培訓(xùn)考試試題【滿分必刷】
- 2025企業(yè)員工崗前安全培訓(xùn)考試試題B卷附答案
- 知到智慧樹網(wǎng)課:病理學(xué)(浙江中醫(yī)藥大學(xué))章節(jié)測試滿分答案
- 2025家電維修服務(wù)合同協(xié)議書
- 2025廣告代理合作協(xié)議合同樣本
- 2025年閉式冷卻塔項目合作計劃書
- 2025【個人與企業(yè)借款協(xié)議書】個人與企業(yè)借款合同模板
- 2025年植物施藥保護(hù)機械項目建議書
- 2025網(wǎng)絡(luò)科技有限公司用工合同樣本
- 2025簽訂房屋買賣合同前需要注意的問題
- 2025勞動合同范本下載打印
- 微生物檢驗的基礎(chǔ)知識試題及答案
- 2025年北京市三類人員安全員c3證考試題庫及答案
- (四調(diào))武漢市2025屆高中畢業(yè)生四月調(diào)研考試 地理試卷(含答案)
- 海南省海口市(2024年-2025年小學(xué)五年級語文)統(tǒng)編版期中考試((上下)學(xué)期)試卷及答案
- 球形網(wǎng)架屋面板安裝專項施工方案
- 2023年昆明安寧市廣播電視臺(融媒體中心)招聘筆試模擬試題及答案解析
- 整形美容醫(yī)院5月營銷活動政策方案
- 全文《中國式現(xiàn)代化》PPT
- 中國華電集團(tuán)公司火電廠煙氣脫硫工程(石灰石石膏濕法)設(shè)計導(dǎo)則(a版)
- 封條模板A4直接打印版
評論
0/150
提交評論