




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省應(yīng)縣第一中學(xué)2025屆下學(xué)期高三期末監(jiān)測試卷數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若不等式對恒成立,則實數(shù)的取值范圍是()A. B. C. D.2.已知函數(shù)且,則實數(shù)的取值范圍是()A. B. C. D.3.已知集合,集合,則()A. B. C. D.4.若的展開式中的常數(shù)項為-12,則實數(shù)的值為()A.-2 B.-3 C.2 D.35.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.6.如圖是國家統(tǒng)計局公布的年入境游客(單位:萬人次)的變化情況,則下列結(jié)論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差7.雙曲線的漸近線方程是()A. B. C. D.8.甲、乙、丙、丁四位同學(xué)高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.59.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.10.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.11.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.12.設(shè),,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩圓相交于兩點,,若兩圓圓心都在直線上,則的值是________________.14.若非零向量,滿足,,,則______.15.在平面直角坐標(biāo)系中,若雙曲線經(jīng)過點(3,4),則該雙曲線的準(zhǔn)線方程為_____.16.已知雙曲線的左、右焦點和點為某個等腰三角形的三個頂點,則雙曲線C的離心率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在綜合素質(zhì)評價的某個維度的測評中,依據(jù)評分細則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個分數(shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學(xué)生的在該維度的測評結(jié)果,在畢業(yè)班中隨機抽出一個班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表:優(yōu)秀合格總計男生6女生18合計60已知在該班隨機抽取1人測評結(jié)果為優(yōu)秀的概率為.(1)完成上面的列聯(lián)表;(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結(jié)果有關(guān)系?(3)現(xiàn)在如果想了解全校學(xué)生在該維度的表現(xiàn)情況,采取簡單隨機抽樣方式在全校學(xué)生中抽取少數(shù)一部分來分析,請你選擇一個合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02418.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標(biāo)均為極坐標(biāo),,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.19.(12分)中的內(nèi)角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.20.(12分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關(guān)于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.21.(12分)已知函數(shù).(Ⅰ)當(dāng)時,求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍.22.(10分)已知在中,內(nèi)角所對的邊分別為,若,,且.(1)求的值;(2)求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B本題考查了導(dǎo)數(shù)在恒成立問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.2.B【解析】
構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域為,且,所以為奇函數(shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.3.D【解析】
可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調(diào)性,以及并集的運算.4.C【解析】
先研究的展開式的通項,再分中,取和兩種情況求解.【詳解】因為的展開式的通項為,所以的展開式中的常數(shù)項為:,解得,故選:C.本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎(chǔ)題.5.B【解析】
根據(jù)組合知識,計算出選出的人分成兩隊混合雙打的總數(shù)為,然后計算和分在一組的數(shù)目為,最后簡單計算,可得結(jié)果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B本題考查排列組合的綜合應(yīng)用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.6.D【解析】
ABD可通過統(tǒng)計圖直接分析得出結(jié)論,C可通過計算中位數(shù)判斷選項是否正確.【詳解】A.由統(tǒng)計圖可知:2014年入境游客萬人次最少,故正確;B.由統(tǒng)計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數(shù)應(yīng)為與的平均數(shù),大于萬次,故正確;D.由統(tǒng)計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應(yīng)的方差更大,故錯誤.故選:D.本題考查統(tǒng)計圖表信息的讀取以及對中位數(shù)和方差的理解,難度較易.處理問題的關(guān)鍵是能通過所給統(tǒng)計圖,分析出對應(yīng)的信息,對學(xué)生分析問題的能力有一定要求.7.C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時要認真審題,注意雙曲線的簡單性質(zhì)的合理運用.8.B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.9.A【解析】
設(shè),則MF的中點坐標(biāo)為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設(shè),∴MF的中點坐標(biāo)為.代入方程可得,∴,∴,∴(負值舍去).故選:A.本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構(gòu)造的齊次方程.10.B【解析】
由題中垂直關(guān)系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B本題考查了雙曲線的漸近線和離心率,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運算的能力,屬于中檔題.11.C【解析】
利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據(jù)兩對立事件的概率和為1求解即可.【詳解】設(shè)“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎(chǔ)題.12.A【解析】
先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上,列出方程解得即可得到結(jié)論.【詳解】由,,設(shè)的中點為,根據(jù)題意,可得,且,解得,,,故.故答案為:.本題考查相交弦的性質(zhì),解題的關(guān)鍵在于利用相交弦的性質(zhì),即兩圓的連心線垂直平分相交弦,屬于基礎(chǔ)題.14.1【解析】
根據(jù)向量的模長公式以及數(shù)量積公式,得出,解方程即可得出答案.【詳解】,即解得或(舍)故答案為:本題主要考查了向量的數(shù)量積公式以及模長公式的應(yīng)用,屬于中檔題.15.【解析】
代入求解得,再求準(zhǔn)線方程即可.【詳解】解:雙曲線經(jīng)過點,,解得,即.又,故該雙曲線的準(zhǔn)線方程為:.故答案為:.本題主要考查了雙曲線的準(zhǔn)線方程求解,屬于基礎(chǔ)題.16.【解析】
由等腰三角形及雙曲線的對稱性可知或,進而利用兩點間距離公式求解即可.【詳解】由題設(shè)雙曲線的左、右焦點分別為,,因為左、右焦點和點為某個等腰三角形的三個頂點,當(dāng)時,,由可得,等式兩邊同除可得,解得(舍);當(dāng)時,,由可得,等式兩邊同除可得,解得,故答案為:本題考查求雙曲線的離心率,考查雙曲線的幾何性質(zhì)的應(yīng)用,考查分類討論思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)在犯錯誤的概率不超過0.10的前提下認為“性別與測評結(jié)果有關(guān)系”(3)見解析.【解析】
(1)由已知抽取的人中優(yōu)秀人數(shù)為20,這樣結(jié)合已知可得列聯(lián)表;(2)根據(jù)列聯(lián)表計算,比較后可得;(3)由于性別對結(jié)果有影響,因此用分層抽樣法.【詳解】解:(1)優(yōu)秀合格總計男生62228女生141832合計204060(2)由于,因此在犯錯誤的概率不超過0.10的前提下認為“性別與測評結(jié)果有關(guān)系”.(3)由(2)可知性別有可能對是否優(yōu)秀有影響,所以采用分層抽樣按男女生比例抽取一定的學(xué)生,這樣得到的結(jié)果對學(xué)生在該維度的總體表現(xiàn)情況會比較符合實際情況.本題考查獨立性檢驗,考查分層抽樣的性質(zhì).考查學(xué)生的數(shù)據(jù)處理能力.屬于中檔題.18.(1),(2)存在,【解析】
(1)先求得曲線的普通方程,利用伸縮變換的知識求得曲線的直角坐標(biāo)方程,再轉(zhuǎn)化為極坐標(biāo)方程.根據(jù)極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得直線的直角坐標(biāo)方程.(2)求得曲線的圓心和半徑,計算出圓心到直線的距離,結(jié)合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標(biāo)伸長到原來的2倍,得到曲線的直角坐標(biāo)方程為,其極坐標(biāo)方程為,直線的直角坐標(biāo)方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.∴由圖像可知,存在這樣的點,,則,且點到直線的距離,∴,∴.本小題主要考查坐標(biāo)變換,考查直線和圓的位置關(guān)系,考查極坐標(biāo)方程和直角坐標(biāo)方程相互轉(zhuǎn)化,考查參數(shù)方程化為普通方程,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.19.(1)(2)10【解析】
(1)由二倍角的正弦公式以及正弦定理,可得,再根據(jù)二倍角的余弦公式計算即可;(2)由已知可得,利用余弦定理解出,由已知計算出與,再根據(jù)三角形的面積公式求出結(jié)果即可.【詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡得,,解得或(負值舍去),,,,,,的面積.本題考查了三角形面積公式以及正弦定理、余弦定理的應(yīng)用,考查了二倍角公式的應(yīng)用,考查了運算能力,屬于基礎(chǔ)題.20.(1)見解析;(2).【解析】
(1)設(shè)點、,求出直線、的方程,與拋物線的方程聯(lián)立,求出點、的坐標(biāo),利用直線、的斜率相等證明出;(2)設(shè)點到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長公式計算出,即可得出關(guān)于的表達式,結(jié)合不等式可解出實數(shù)的取值范圍.【詳解】(1)設(shè)點、,則,直線的方程為:,由,消去并整理得,由韋達定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設(shè)點到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達定理得,,,得,設(shè)點到直線的高為,則,,,,解得,因此,實數(shù)的取值范圍是.本題考查直線與直線平行的證明,考查實數(shù)的取值范圍的求法,考查拋物線、直線方程、韋達定理、弦長公式、直線的斜率等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是難題.21.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)把代入,可得,令,求出其在上的值域,利用對數(shù)函數(shù)的單調(diào)性即可求解.(Ⅱ)根據(jù)對數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【詳解】(Ⅰ)當(dāng)時,,此時函數(shù)的定義域為.因為函數(shù)的最小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 住宅墊層施工方案
- 預(yù)制道床施工方案
- Cu7Mn2雙金屬簇纖維涂層制備及其固相微萃取應(yīng)用研究
- 纈氨酸通過腸道微生物及代謝物影響小鼠脂質(zhì)代謝及炎癥的研究
- 不同組分比例的Pt-Co-Cu合金催化劑的可控制備及催化氧化甲苯研究
- 全身麻醉與球后阻滯麻醉下青光眼手術(shù)眼內(nèi)壓變化比較
- 農(nóng)村三產(chǎn)融合發(fā)展視野下的共同富裕研究
- 基于創(chuàng)新意識培養(yǎng)的初中化學(xué)實驗改進及教學(xué)研究
- 磁介導(dǎo)納米純化劑的制備及對His-tagged蛋白的特異性純化
- 紡絲專件清洗系統(tǒng)設(shè)計與研究
- 2024年3月ITSMS信息技術(shù)服務(wù)管理體系基礎(chǔ)(真題卷)
- 節(jié)能評審和節(jié)能評估文件編制費用收費標(biāo)準(zhǔn)
- 2023-2024年《勞務(wù)勞動合同樣本范本書電子版模板》
- 中國居民口腔健康狀況第四次中國口腔健康流行病學(xué)調(diào)查報告
- MOOC 數(shù)據(jù)挖掘-國防科技大學(xué) 中國大學(xué)慕課答案
- 中藥注射劑合理使用培訓(xùn)
- 第13課+清前中期的興盛與危機【中職專用】《中國歷史》(高教版2023基礎(chǔ)模塊)
- 2024年國家糧食和物資儲備局直屬事業(yè)單位招聘筆試參考題庫附帶答案詳解
- 蘇軾臨江仙課件大學(xué)語文完美版
- 《施工測量》課件
- 情緒健康管理服務(wù)規(guī)范
評論
0/150
提交評論