2025年福建省龍巖市五縣初三下學期八模考試數學試題含解析_第1頁
2025年福建省龍巖市五縣初三下學期八模考試數學試題含解析_第2頁
2025年福建省龍巖市五縣初三下學期八模考試數學試題含解析_第3頁
2025年福建省龍巖市五縣初三下學期八模考試數學試題含解析_第4頁
2025年福建省龍巖市五縣初三下學期八模考試數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年福建省龍巖市五縣初三下學期八模考試數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,若銳角△ABC內接于⊙O,點D在⊙O外(與點C在AB同側),則∠C與∠D的大小關系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無法確定2.在某校“我的中國夢”演講比賽中,有9名學生參加決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學生成績的()A.眾數 B.方差 C.平均數 D.中位數3.在1-7月份,某種水果的每斤進價與出售價的信息如圖所示,則出售該種水果每斤利潤最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份4.如圖,在底邊BC為2,腰AB為2的等腰三角形ABC中,DE垂直平分AB于點D,交BC于點E,則△ACE的周長為()A.2+ B.2+2 C.4 D.35.二次函數的圖像如圖所示,下列結論正確是()A. B. C. D.有兩個不相等的實數根6.若,則的值為()A.12 B.2 C.3 D.07.下列各數中,相反數等于本身的數是()A.–1 B.0 C.1 D.28.如圖,AB∥CD,那么()A.∠BAD與∠B互補 B.∠1=∠2 C.∠BAD與∠D互補 D.∠BCD與∠D互補9.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.10.如圖,比例規是一種畫圖工具,它由長度相等的兩腳AC和BD交叉構成,利用它可以把線段按一定的比例伸長或縮短.如果把比例規的兩腳合上,使螺絲釘固定在刻度3的地方(即同時使OA=3OC,OB=3OD),然后張開兩腳,使A,B兩個尖端分別在線段a的兩個端點上,當CD=1.8cm時,則AB的長為()A.7.2cm B.5.4cm C.3.6cm D.0.6cm二、填空題(共7小題,每小題3分,滿分21分)11.已知,直接y=kx+b(k>0,b>0)與x軸、y軸交A、B兩點,與雙曲線y=(x>0)交于第一象限點C,若BC=2AB,則S△AOB=________.12.一個圓錐的側面展開圖是半徑為6,圓心角為120°的扇形,那么這個圓錐的底面圓的半徑為____.13.已知b是a,c的比例中項,若a=4,c=16,則b=________.14.關于x的一元二次方程ax2﹣x﹣=0有實數根,則a的取值范圍為________.15.計算=_____.16.計算5個數據的方差時,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],則的值為_____.17.若實數a、b、c在數軸上對應點的位置如圖,則化簡:2|a+c|++3|a﹣b|=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數的圖象經過點M,N.求反比例函數的解析式;若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.19.(5分)(1)問題發現如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數.(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B的數量關系以及PB與CD之間的數量關系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請直接寫出CD的長.20.(8分)數學活動小組的小穎、小明和小華利用皮尺和自制的兩個直角三角板測量學校旗桿MN的高度,如示意圖,△ABC和△A′B′C′是他們自制的直角三角板,且△ABC≌△A′B′C′,小穎和小明分別站在旗桿的左右兩側,小穎將△ABC的直角邊AC平行于地面,眼睛通過斜邊AB觀察,一邊觀察一邊走動,使得A、B、M共線,此時,小華測量小穎距離旗桿的距離DN=19米,小明將△A′B′C′的直角邊B′C′平行于地面,眼睛通過斜邊B′A′觀察,一邊觀察一邊走動,使得B′、A′、M共線,此時,小華測量小明距離旗桿的距離EN=5米,經測量,小穎和小明的眼睛與地面的距離AD=1米,B′E=1.5米,(他們的眼睛與直角三角板頂點A,B′的距離均忽略不計),且AD、MN、B′E均與地面垂直,請你根據測量的數據,計算旗桿MN的高度.21.(10分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數按一、二、三、四班分別記為A1,A2,A3,A4,現對A1,A2,A3,A4統計后,制成如圖所示的統計圖.求七年級已“建檔立卡”的貧困家庭的學生總人數;將條形統計圖補充完整,并求出A1所在扇形的圓心角的度數;現從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.22.(10分)計算:﹣(﹣2)2+|﹣3|﹣20180×23.(12分)在學習了矩形這節內容之后,明明同學發現生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點P為AB邊上的定點,且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動點E,當的值是多少時,△PDE的周長最小?如圖(3),點Q是邊AB上的定點,且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長交AB的延長線于點F,連接CF,G為CF的中點,M、N分別為線段QF和CD上的動點,且始終保持QM=CN,MN與DF相交于點H,請問GH的長度是定值嗎?若是,請求出它的值,若不是,請說明理由.24.(14分)某校想了解學生每周的課外閱讀時間情況,隨機調查了部分學生,對學生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數分別直方圖和扇形統計圖:根據圖中提供的信息,解答下列問題:(1)補全頻數分布直方圖(2)求扇形統計圖中m的值和E組對應的圓心角度數(3)請估計該校3000名學生中每周的課外閱讀時間不小于6小時的人數

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

直接利用圓周角定理結合三角形的外角的性質即可得.【詳解】連接BE,如圖所示:

∵∠ACB=∠AEB,

∠AEB>∠D,

∴∠C>∠D.

故選:A.考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關鍵.2、D【解析】

根據中位數是一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數)的意義,9人成績的中位數是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數,比較即可.【詳解】由于總共有9個人,且他們的分數互不相同,第5的成績是中位數,要判斷是否進入前5名,故應知道中位數的多少.故本題選:D.本題考查了統計量的選擇,熟練掌握眾數,方差,平均數,中位數的概念是解題的關鍵.3、B【解析】

解:各月每斤利潤:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利潤最大,故選B.4、B【解析】分析:根據線段垂直平分線的性質,把三角形的周長問題轉化為線段和的問題解決即可.詳解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周長=AC+AE+CE=AC+BC=2+2,故選B.點睛:本題考查了等腰三角形性質和線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.5、C【解析】【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;由對稱軸為x==1,可得2a+b=0;當x=-1時圖象在x軸下方得到y=a-b+c<0,結合b=-2a可得3a+c<0;觀察圖象可知拋物線的頂點為(1,3),可得方程有兩個相等的實數根,據此對各選項進行判斷即可.【詳解】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0,故A選項錯誤;∵對稱軸x==1,∴b=-2a,即2a+b=0,故B選項錯誤;當x=-1時,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C選項正確;∵拋物線的頂點為(1,3),∴的解為x1=x2=1,即方程有兩個相等的實數根,故D選項錯誤,故選C.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0)的圖象,當a>0,開口向上,函數有最小值,a<0,開口向下,函數有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側,a與b異號,對稱軸在y軸的右側;當c>0,拋物線與y軸的交點在x軸的上方;當△=b2-4ac>0,拋物線與x軸有兩個交點.6、A【解析】

先根據得出,然后利用提公因式法和完全平方公式對進行變形,然后整體代入即可求值.【詳解】∵,∴,∴.故選:A.本題主要考查整體代入法求代數式的值,掌握完全平方公式和整體代入法是解題的關鍵.7、B【解析】

根據相反數的意義,只有符號不同的數為相反數.【詳解】解:相反數等于本身的數是1.故選B.本題考查了相反數的意義.注意掌握只有符號不同的數為相反數,1的相反數是1.8、C【解析】

分清截線和被截線,根據平行線的性質進行解答即可.【詳解】解:∵AB∥CD,∴∠BAD與∠D互補,即C選項符合題意;當AD∥BC時,∠BAD與∠B互補,∠1=∠2,∠BCD與∠D互補,故選項A、B、D都不合題意,故選:C.本題考查了平行線的性質,熟記性質并準確識圖是解題的關鍵.9、A【解析】分析:連接OE1,OD1,OD2,如圖,根據正六邊形的性質得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據切線的性質得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數)等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.10、B【解析】【分析】由已知可證△ABO∽CDO,故,即.【詳解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故選B【點睛】本題考核知識點:相似三角形.解題關鍵點:熟記相似三角形的判定和性質.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據題意可設出點C的坐標,從而得到OA和OB的長,進而得到△AOB的面積即可.【詳解】∵直接y=kx+b與x軸、y軸交A、B兩點,與雙曲線y=交于第一象限點C,若BC=2AB,設點C的坐標為(c,)∴OA=0.5c,OB==,∴S△AOB===此題主要考查反比例函數的圖像,解題的關鍵是根據題意設出C點坐標進行求解.12、2【解析】

試題分析:設此圓錐的底面半徑為r,根據圓錐的側面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,解得r=2cm.考點:圓錐側面展開扇形與底面圓之間的關系.13、±8【解析】

根據比例中項的定義即可求解.【詳解】∵b是a,c的比例中項,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案為±8此題考查了比例中項的定義,如果作為比例線段的內項是兩條相同的線段,即a∶b=b∶c或,那么線段b叫做線段a、c的比例中項.14、a≥﹣1且a≠1【解析】

利用一元二次方程的定義和判別式的意義得到≠1且△=(﹣1)2﹣4a?(﹣)≥1,然后求出兩個不等式的公共部分即可.【詳解】根據題意得a≠1且△=(﹣1)2﹣4a?(﹣)≥1,解得:a≥﹣1且a≠1.故答案為a≥﹣1且a≠1.本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關系:當△>1時,方程有兩個不相等的兩個實數根;當△=1時,方程有兩個相等的兩個實數根;當△<1時,方程無實數根.15、0【解析】分析:先計算乘方、零指數冪,再計算加減可得結果.詳解:1-1=0故答案為0.點睛:零指數冪成立的條件是底數不為0.16、1【解析】

根據平均數的定義計算即可.【詳解】解:故答案為1.本題主要考查平均數的求法,掌握平均數的公式是解題的關鍵.17、﹣5a+4b﹣3c.【解析】

直接利用數軸結合二次根式、絕對值的性質化簡得出答案.【詳解】由數軸可得:a+c<0,b-c>0,a-b<0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c.故答案為-5a+4b-3c.此題主要考查了二次根式以及絕對值的性質,正確化簡是解題關鍵.三、解答題(共7小題,滿分69分)18、(1);(2)點P的坐標是(0,4)或(0,-4).【解析】

(1)求出OA=BC=2,將y=2代入求出x=2,得出M的坐標,把M的坐標代入反比例函數的解析式即可求出答案.(2)求出四邊形BMON的面積,求出OP的值,即可求出P的坐標.【詳解】(1)∵B(4,2),四邊形OABC是矩形,∴OA=BC=2.將y=2代入3得:x=2,∴M(2,2).把M的坐標代入得:k=4,∴反比例函數的解析式是;(2).∵△OPM的面積與四邊形BMON的面積相等,∴.∵AM=2,∴OP=4.∴點P的坐標是(0,4)或(0,-4).19、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】

(1)根據已知條件推出△ABP≌△ACD,根據全等三角形的性質得到PB=CD,∠ACD=∠B=45°,于是得到根據已知條件得到△ABC∽△APD,由相似三角形的性質得到,得到ABP∽△CAD,根據相似三角形的性質得到結論;過A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據勾股定理得到根據相似三角形的性質得到,推出△ABP∽△CAD,根據相似三角形的性質即可得到結論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴本題考查了等腰直角三角形的性質,全等三角形的判定和性質,相似三角形的判定和性質,勾股定理,熟練掌握相似三角形的判定和性質是解題的關鍵.20、11米【解析】

過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,根據相似三角形的性質即可得到結論.【詳解】解:過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴AEMF∴19MF∴MF=192∵NF=B'E=1.5,MN=MF+NF,∴MN=MF+B'E=19答:旗桿MN的高度約為11米.本題考查了相似三角形的應用,正確的作出輔助線是解題的關鍵.21、(1)15人;(2)補圖見解析.(3).【解析】

(1)根據三班有6人,占的百分比是40%,用6除以所占的百分比即可得總人數;(2)用總人數減去一、三、四班的人數得到二班的人數即可補全條形圖,用一班所占的比例乘以360°即可得A1所在扇形的圓心角的度數;(3)根據題意畫出樹狀圖,得出所有可能,進而求恰好選出一名男生和一名女生的概率.【詳解】解:(1)七年級已“建檔立卡”的貧困家庭的學生總人數:6÷40%=15人;(2)A2的人數為15﹣2﹣6﹣4=3(人)補全圖形,如圖所示,A1所在圓心角度數為:×360°=48°;(3)畫出樹狀圖如下:共6種等可能結果,符合題意的有3種∴選出一名男生一名女生的概率為:P=.本題考查了條形圖與扇形統計圖,概率等知識,準確識圖,從圖中發現有用的信息,正確根據已知畫出樹狀圖得出所有可能是解題關鍵.22、﹣1【解析】

根據乘方的意義、絕對值的性質、零指數冪的性質及立方根的定義依次計算各項后,再根據有理數的運算法則進行計算即可.【詳解】原式=﹣1+3﹣1×3=﹣1.本題考查了乘方的意義、絕對值的性質、零指數冪的性質、立方根的定義及有理數的混合運算,熟知乘方的意義、絕對值的性質、零指數冪的性質、立方根的定義及有理數的混合運算順序是解決問題的關鍵.23、(1)證明見解析(2)(3)【解析】

(1)根據題中“完美矩形”的定義設出AD與AB,根據AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點P關于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對稱的性質得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論