【市級聯考】江蘇省鹽城市東臺市2025屆初三4月(二診)調研測試卷(康德版)數學試題含解析_第1頁
【市級聯考】江蘇省鹽城市東臺市2025屆初三4月(二診)調研測試卷(康德版)數學試題含解析_第2頁
【市級聯考】江蘇省鹽城市東臺市2025屆初三4月(二診)調研測試卷(康德版)數學試題含解析_第3頁
【市級聯考】江蘇省鹽城市東臺市2025屆初三4月(二診)調研測試卷(康德版)數學試題含解析_第4頁
【市級聯考】江蘇省鹽城市東臺市2025屆初三4月(二診)調研測試卷(康德版)數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

【市級聯考】江蘇省鹽城市東臺市2025屆初三4月(二診)調研測試卷(康德版)數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下面的幾何體中,主視圖為圓的是()A. B. C. D.2.二次函數y=a(x﹣m)2﹣n的圖象如圖,則一次函數y=mx+n的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限3.如圖,在平面直角坐標系中,△OAB的頂點A在x軸正半軸上,OC是△OAB的中線,點B、C在反比例函數y=(x>0)的圖象上,則△OAB的面積等于()A.2 B.3 C.4 D.64.已知二次函數y=﹣(x﹣h)2+1(為常數),在自變量x的值滿足1≤x≤3的情況下,與其對應的函數值y的最大值為﹣5,則h的值為()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+5.下列所給的汽車標志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.6.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.167.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,則∠B′等于()A.30° B.50° C.40° D.70°8.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數軸上,其中點A,D分別對應數軸上的實數﹣2,2,則AC的長度為()A.2 B.4 C.2 D.49.A、B兩地相距180km,新修的高速公路開通后,在A、B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h.若設原來的平均車速為xkm/h,則根據題意可列方程為A. B.C. D.10.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數為()A.25° B.50° C.60° D.30°二、填空題(共7小題,每小題3分,滿分21分)11.如圖所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點A為圓心,小于AC的長為半徑畫弧,分別交AB,AC于點E,F;②分別以點E,F為圓心,大于EF的長為半徑畫弧,兩弧相交于點G;③作射線AG交BC邊于點D.則∠ADC的度數為.

12.關于的方程有增根,則______.13.如圖,△ABC與△DEF位似,點O為位似中心,若AC=3DF,則OE:EB=_____.14.如圖,某數學興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形ABD的面積為_____.15.計算:×(﹣2)=___________.16.某種商品每件進價為20元,調查表明:在某段時間內若以每件x元(20≤x≤30,且x為整數)出售,可賣出(30﹣x)件.若使利潤最大,每件的售價應為______元.17.如圖,矩形ABCD中,AB=1,BC=2,點P從點B出發,沿B-C-D向終點D勻速運動,設點P走過的路程為x,△ABP的面積為S,能正確反映S與x之間函數關系的圖象是()A. B. C. D.三、解答題(共7小題,滿分69分)18.(10分)隨著互聯網的發展,同學們的學習習慣也有了改變,一些同學在做題遇到困難時,喜歡上網查找答案.針對這個問題,某校調查了部分學生對這種做法的意見(分為:贊成、無所謂、反對),并將調查結果繪制成圖1和圖2兩個不完整的統計圖.請根據圖中提供的信息,解答下列問題:此次抽樣調查中,共調查了多少名學生?將圖1補充完整;求出扇形統計圖中持“反對”意見的學生所在扇形的圓心角的度數;根據抽樣調查結果,請你估計該校1500名學生中有多少名學生持“無所謂”意見.19.(5分)2018年“植樹節”前夕,某小區為綠化環境,購進200棵柏樹苗和120棵棗樹苗,且兩種樹苗所需費用相同.每棵棗樹苗的進價比每棵柏樹苗的進價的2倍少5元,每棵柏樹苗的進價是多少元.20.(8分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點E.求證:DE=CE.若∠CDE=35°,求∠A的度數.21.(10分)為進一步打造“宜居重慶”,某區擬在新竣工的矩形廣場的內部修建一個音樂噴泉,要求音樂噴泉M到廣場的兩個入口A、B的距離相等,且到廣場管理處C的距離等于A和B之間距離的一半,A、B、C的位置如圖所示.請在答題卷的原圖上利用尺規作圖作出音樂噴泉M的位置.(要求:不寫已知、求作、作法和結論,保留作圖痕跡,必須用鉛筆作圖)22.(10分)如圖,已知拋物線經過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.(1)求該拋物線所表示的二次函數的表達式;(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.23.(12分)小華想復習分式方程,由于印刷問題,有一個數“?”看不清楚:.她把這個數“?”猜成5,請你幫小華解這個分式方程;小華的媽媽說:“我看到標準答案是:方程的增根是,原分式方程無解”,請你求出原分式方程中“?”代表的數是多少?24.(14分)已知動點P以每秒2

cm的速度沿圖(1)的邊框按從B?C?D?E?F?A的路徑移動,相應的△ABP的面積S與時間t之間的關系如圖(2)中的圖象表示.若AB=6

cm,試回答下列問題:(1)圖(1)中的BC長是多少?(2)圖(2)中的a是多少?(3)圖(1)中的圖形面積是多少?(4)圖(2)中的b是多少?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題解析:A、的主視圖是矩形,故A不符合題意;B、的主視圖是正方形,故B不符合題意;C、的主視圖是圓,故C符合題意;D、的主視圖是三角形,故D不符合題意;故選C.考點:簡單幾何體的三視圖.2、A【解析】

由拋物線的頂點坐標在第四象限可得出m>0,n>0,再利用一次函數圖象與系數的關系,即可得出一次函數y=mx+n的圖象經過第一、二、三象限.【詳解】解:觀察函數圖象,可知:m>0,n>0,∴一次函數y=mx+n的圖象經過第一、二、三象限.故選A.本題考查了二次函數的圖象以及一次函數圖象與系數的關系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關鍵.3、B【解析】

作BD⊥x軸于D,CE⊥x軸于E,∴BD∥CE,∴,∵OC是△OAB的中線,∴,設CE=x,則BD=2x,∴C的橫坐標為,B的橫坐標為,∴OD=,OE=,∴DE=OE-OD=﹣=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA?BD=×=1.故選B.點睛:本題是反比例函數與幾何的綜合題,熟知反比例函數的圖象上點的特征和相似三角形的判定和性質是解題的關鍵.4、C【解析】

∵當x<h時,y隨x的增大而增大,當x>h時,y隨x的增大而減小,∴①若h<1≤x≤3,x=1時,y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,當x=3時,y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).綜上,h的值為1-或3+,故選C.點睛:本題主要考查二次函數的性質和最值,根據二次函數的增減性和最值分兩種情況討論是解題的關鍵.5、B【解析】分析:根據軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.6、D【解析】

由AB的垂直平分MN交AC于D,根據線段垂直平分線的性質,即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.此題考查了線段垂直平分線的性質,比較簡單,注意數形結合思想與轉化思想的應用.7、A【解析】

利用三角形內角和求∠B,然后根據相似三角形的性質求解.【詳解】解:根據三角形內角和定理可得:∠B=30°,根據相似三角形的性質可得:∠B′=∠B=30°.故選:A.本題考查相似三角形的性質,掌握相似三角形對應角相等是本題的解題關鍵.8、C【解析】

根據等腰三角形的性質和勾股定理解答即可.【詳解】解:∵點A,D分別對應數軸上的實數﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.此題考查等腰三角形的性質,注意等腰三角形的三線合一,熟練運用勾股定理.9、A【解析】

直接利用在A,B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h,利用時間差值得出等式即可.【詳解】解:設原來的平均車速為xkm/h,則根據題意可列方程為:﹣=1.故選A.本題主要考查了由實際問題抽象出分式方程,根據題意得出正確等量關系是解題的關鍵.10、A【解析】如圖,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、65°【解析】

根據已知條件中的作圖步驟知,AG是∠CAB的平分線,根據角平分線的性質解答即可.【詳解】根據已知條件中的作圖步驟知,AG是∠CAB的平分線,∵∠CAB=50°,

∴∠CAD=25°;

在△ADC中,∠C=90°,∠CAD=25°,

∴∠ADC=65°(直角三角形中的兩個銳角互余);

故答案是:65°.12、-1【解析】根據分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化為整式方程為:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案為-1.點睛:此題主要考查了分式方程的增根問題,解題關鍵是明確增根出現的原因,把增根代入最簡公分母即可求得增根,然后把它代入所化為的整式方程即可求出未知系數.13、1:2【解析】

△ABC與△DEF是位似三角形,則DF∥AC,EF∥BC,先證明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,據此可得答案.【詳解】解:∵△ABC與△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,則OE:EB=1:2故答案為:1:2本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,位似圖形的對應頂點的連線平行或共線.14、25【解析】試題解析:由題意15、-1【解析】

根據“兩數相乘,異號得負,并把絕對值相乘”即可求出結論.【詳解】故答案為本題考查了有理數的乘法,牢記“兩數相乘,同號得正,異號得負,并把絕對值相乘”是解題的關鍵.16、3【解析】試題分析:設最大利潤為w元,則w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴當x=3時,二次函數有最大值3,故答案為3.考點:3.二次函數的應用;3.銷售問題.17、C【解析】

分出情況當P點在BC上運動,與P點在CD上運動,得到關系,選出圖象即可【詳解】由題意可知,P從B開始出發,沿B—C—D向終點D勻速運動,則當0<x≤2,s=x當2<x≤3,s=1所以剛開始的時候為正比例函數s=x圖像,后面為水平直線,故選C本題主要考查實際問題與函數圖像,關鍵在于讀懂題意,弄清楚P的運動狀態三、解答題(共7小題,滿分69分)18、200名;見解析;;(4)375.【解析】

根據統計圖中的數據可以求得此次抽樣調查中,共調查了多少名學生;

根據中的結果和統計圖中的數據可以求得反對的人數,從而可以將條形統計圖補充完整;

根據統計圖中的數據可以求得扇形統計圖中持“反對”意見的學生所在扇形的圓心角的度數;

根據統計圖中的數據可以估計該校1500名學生中有多少名學生持“無所謂”意見.【詳解】解:,

答:此次抽樣調查中,共調查了200名學生;

反對的人數為:,

補全的條形統計圖如右圖所示;

扇形統計圖中持“反對”意見的學生所在扇形的圓心角的度數是:;

(4),答:該校1500名學生中有375名學生持“無所謂”意見.本題考查條形統計圖、扇形統計圖、用樣本估計總體,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.19、15元.【解析】

首先設每棵柏樹苗的進價是x元,則每棵棗樹苗的進價是(2x-5)元,根據題意列出一元一次方程進行求解.【詳解】解:設每棵柏樹苗的進價是x元,則每棵棗樹苗的進價是(2x-5)元.根據題意,列方程得:,解得:x=15答:每棵柏樹苗的進價是15元.此題考查了一元一次方程的應用,解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系列出方程,再求解.20、(1)見解析;(2)40°.【解析】

(1)根據角平分線的性質可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進而可得出∠ACB=2∠ECD=70°,再根據等腰三角形的性質結合三角形內角和定理即可求出∠A的度數.【詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.本題考查了等腰三角形的判定與性質、平行線的性質以及角平分線.解題的關鍵是:(1)根據平行線的性質結合角平分線的性質找出∠EDC=∠ECD;(2)利用角平分線的性質結合等腰三角形的性質求出∠ACB=∠ABC=70°.21、解:作AB的垂直平分線,以點C為圓心,以AB的一半為半徑畫弧交AB的垂直平分線于點M即可.【解析】

易得M在AB的垂直平分線上,且到C的距離等于AB的一半.22、(1)y=﹣x2+x+2;(2)m=﹣1或m=3時,四邊形DMQF是平行四邊形;(3)點Q的坐標為(3,2)或(﹣1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.【解析】

分析:(1)待定系數法求解可得;

(2)先利用待定系數法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據此列出關于m的方程,解之可得;

(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時m的值;②∠BQM=90°,此時點Q與點A重合,△BOD∽△BQM′,易得點Q坐標.詳解:(1)由拋物線過點A(-1,0)、B(4,0)可設解析式為y=a(x+1)(x-4),

將點C(0,2)代入,得:-4a=2,

解得:a=-,

則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;

(2)由題意知點D坐標為(0,-2),

設直線BD解析式為y=kx+b,

將B(4,0)、D(0,-2)代入,得:,解得:,

∴直線BD解析式為y=x-2,

∵QM⊥x軸,P(m,0),

∴Q(m,-m2+m+2)、M(m,m-2),

則QM=-m2+m+2-(m-2)=-m2+m+4,

∵F(0,)、D(0,-2),

∴DF=,

∵QM∥DF,

∴當-m2+m+4=時,四邊形DMQF是平行四邊形,

解得:m=-1(舍)或m=3,

即m=3時,四邊形DMQF是平行四邊形;

(3)如圖所示:

∵QM∥DF,

∴∠ODB=∠QMB,

分以下兩種情況:

①當∠DOB=∠MBQ=90°時,△DOB∽△MBQ,

則,

∵∠MBQ=90°,

∴∠MBP+∠PBQ=90°,

∵∠MPB=∠BPQ=90°,

∴∠MBP+∠BMP=90°,

∴∠BMP=∠PBQ,

∴△MBQ∽△BPQ,

∴,即,

解得:m1=3、m2=4,

當m=4時,點P、Q、M均與點B重合,不能構成三角形,舍去,

∴m=3,點Q的坐標為(3,2);

②當∠BQM=90°時,此時點Q與點A重合,△BOD∽△BQM′,

此時m=-1,點Q的坐標為(-1,0);

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論