




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
FutureDirectionsWorkshopon
EmbodiedIntelligence
May19–20,2024
JoshuaBongard,UniversityofVermontKyujinCho,SeoulNationalUniversity
Yong-LaePark,SeoulNationalUniversityRobertShepherd,CornellUniversity
Preparedby:
KateKlemic,VirginiaTechAppliedResearchCorporation
SithiraRatnayaka,VirginiaTechAppliedResearchCorporation
FutureDirectionsWorkshopseries
WorkshopsponsoredbytheBasicResearchOffice,OfficeoftheUnderSecretaryofDefenseforResearch&Engineering
ii
Contents
Prefaceiii
ExecutiveSummary1
Introduction5
ResearchChallenges7
ResearchOpportunities12
Conclusion17
Bibliography18
AppendixI–WorkshopAttendees19
AppendixII–WorkshopAgendaandProspectus27
iii
Innovationisthekey
tothefuture,butbasicresearchisthekeytofutureinnovation.
–JeromeIsaacFriedman,
NobelPrizeRecipient(1990)
Preface
Overthepastcentury,scienceandtechnologyhasbrought
remarkablenewcapabilitiestoallsectorsoftheeconomy;
fromtelecommunications,energy,andelectronicstomedicine,transportationanddefense.Technologiesthatwerefantasy
decadesago,suchastheinternetandmobiledevices,now
informthewaywelive,work,andinteractwithourenvironment.Keytothistechnologicalprogressisthecapacityoftheglobalbasicresearchcommunitytocreatenewknowledgeandto
developnewinsightsinscience,technology,andengineering.Understandingthetrajectoriesofthisfundamentalresearch,
withinthecontextofglobalchallenges,empowersstakeholderstoidentifyandseizepotentialopportunities.
TheFutureDirectionsWorkshopseries,sponsoredbytheBasicResearchOfficeoftheOfficeoftheUnderSecretaryofDefenseforResearchandEngineering(OUSD(R&E)),seekstoexamine
emergingresearchandengineeringareasthataremostlikelytotransformfuturetechnologycapabilities.Theseworkshopsgatherdistinguishedacademicresearchersfromaroundtheglobe
toengageinaninteractivedialogueaboutthepromisesand
challengesofeachemergingbasicresearchareaandhowtheycouldimpactfuturecapabilities.Chairedbyleadersinthefield,theseworkshopsencourageunfetteredconsiderationsoftheprospectsoffundamentalscienceareasfromthemosttalentedmindsintheresearchcommunity.
ReportsfromtheFutureDirectionWorkshopseriescapture
thesediscussionsandthereforeplayavitalroleinthediscussionofbasicresearchpriorities.Ineachreport,participantsare
challengedtoaddressthefollowingimportantquestions:
?Howwilltheresearchimpactscienceandtechnologycapabilitiesofthefuture?
?Whatisthetrajectoryofscientificachievementoverthenextfewdecades?
?Whatarethemostfundamentalchallengestoprogress?
ThisreportistheproductofaworkshopheldMay19-20,2024
inSeoul,SouthKoreaonthefutureofEmbodiedIntelligence
research,asanessentialandcriticalaspectoffutureroboticsthatareagileandenduring,aswellasdamagetolerant.ItisintendedasaresourcetotheS&Tcommunityincludingthebroader
federalfundingcommunity,federallaboratories,domesticindustrialbase,andacademia.
1
ExecutiveSummary
EmbodiedIntelligence(EI)isarapidlyevolvingfieldthatseekstoaddressnewideasaboutthenatureofmachineintelligence.EIblursthelinesbetweenArtificialandPhysicalIntelligence(AIandPI,respectively);itcreatesadiffuseinterfacebetweenartificial
andnaturalcomponentsofasystem.EIaimstoincorporate
intomachinesthemultimodalandmultiscaleadaptation
observedinnaturalorganisms,forawhollynewapproachto
robotictechnology,allowingafuturefilledwithautonomous,
useful,andsafemachines.Consideraworldinwhichevery
machineismorphologicallyandneurologicallyunique.Such
technologieswouldbeimmunetounintentionalsurprise(novelenvironments)orintentionalsurprise(adversarialattacks)
becausenotwomachineswouldshareacommonAchillesheel.Imaginemachinesthat,whencleavedintwo,formtwosmalleryetdistinctversionsoftheoriginalmachine.Imaginemachinesthatcandevolveintoswarmsofindependentcomponentsandreformintoaphysicalunityondemand.Considerautonomousmachinesinwhichthereisnocleardistinctionbetweencontrol,actuation,sensation,communication,computation,andpower,renderingsuchmachinesimmunetocompletefailureofanyonesub-system.Thesemachinesmightalsoincorporatelivingandnon-livingcomponents,furthercombiningthebestofthebioticandabioticworldsandblurringthedistinctionbetween“us”
(humans)and“them”(machines).
Pasteffortsinembodiedintelligencesciencehaveproceeded
withlittleinteractionbetweenthebroadfieldsinwhichR&D
waspursued.Inthepresent,therearemanyeffortssurroundingtheintegrationofnewAIandmachines,leadingtoaneedto
integratethebrainandbodyofthesesystems.Biologicalsystemshaveservedasinspirationformanyofthemodernapplications
andforthesesystems.Thereisanopportunitywithinembodiedintelligencetocauseresponsesintermediatetopre-flex,reflex,andcentralizeddecisionmaking.
Anoctopustentacleprovidesagoodexampleofahigher
level,yetlocalizedObserve,Orient,Decide,Act(OODA)loop.Whilethewholeoctopushasacentralizedbrain,italsohasa
largenumberofneuronsinitstentacles.Evenwhenseparatedfromthebody,thesuckersofatentacleareabletosensethe
chemicalenvironment,locallydecideifanobjectisfoodornot,graspitifitisfoodandpullittowardsitsconceptofwhereitsbeakislocated.Sensing,actuation,computation,andenergyisdistributedthrougheverymm3ofanoctopus’sflesh;aliving,autonomousmaterialsystem.
WhileAIexcelsathandlinglargeamountsofdata,theunderlyingstatisticalprocessoflearningisnotconducivetocausaland
abstractreasoning.Attemptstocreatesuchcapabilitywithin
thatframeworkhavegenerallynotyieldedconsistentlyaccurateresults,andthislikelyrelatestothedifferencebetween
howengineered(AI)andnaturalorganismslearn.Theseare
fundamentalquestions:whatislearningand,toadeeperlevel,whatisintelligence?
Advancesinthesefieldscouldleadtofurtherintegration
betweenhumansandmachines,creatingnewecosystemsinwhichallcanco-exist.
TheFutureDirectionsWorkshoponEmbodiedIntelligence
washeldon19-20May2024inSeoul,SouthKoreatoexamine
theprospectsforapplyingnewapproaches,theories,and
toolsinbasicresearchtoenablethesecapabilitiesoverthe
next10-20years.Itgathered28researchersfromavarietyof
fields,includingsoftrobotics,motioncontrol,biomechanics,
mechanicalengineering,controltheory,systemsbiology,physics,mathematics,computerscience,andbioethics.Theworkshop
includedresearchersfromtheRepublicofKorea(ROK)andthe
UnitedStates(US)andservedasafoundationforcollaborationinthefieldbetweenthetwocountries.
Theworkshopwasorganizedforhighlyinteractivesmallgroupdiscussionswithwhole-groupsynthesisonthechallenges,
opportunitiesandtrajectoryofresearchacrossthreepillarsofembodiedintelligence:perception,motion,andadaptation.
ResearchChallenges
ParticipantsidentifiedthefollowingchallengesforeachtechnicalpillarofEIandidentifiedthekeyresearchareastorealizethe
envisionedfutureofembodiedintelligence.
Perception
Theabilityformachinestosensetheirsurroundings/environmentandgleaninformationfromithasbeenexploredutilizingseveralmethods.Severalsensingmodalitieshaveemergedthatinterfacethebodywiththeenvironment(exteroception)andprovide
moredetailedknowledgeaboutthebody’sstateinternally
(proprioception).Perceptiongoesbeyondthisbyincorporatingsensessuchasolfactory(smell,ortheabilitytodetectchemicalinformation)andnociception(theabilitytodetectharmful
environmentalstimuli),whicharemoreexoticmethodologiesthatcanbeutilizedforenvironmentalnavigation.
ThemainresearchchallengesforPerceptionarelinkedtothe
fundamentalquestionssurroundingsensingandtheability
toinferinformationfromsensors.Forallnaturalorganisms,
knowledgerepresentationishighlydependentonthesensory
modes,andtheirprocessingandfusion.Thus,learningcannot
bedissociatedfromthesensorsusedtoacquireinformation.
Inaddition,usingsensingintheartificialworldrevolvesaroundvision,whileinthenaturalworld,aplethoraofothermethodsareused.ThemainPerceptionresearchchallengesinclude:
Sensitivity:Increasingthesignaltonoiseratiobylocalizingsignalsofinterestandamplifyingisadynamicand
computationallychallengingprocessthathasthepotentialtoincreaseagilityandenergyefficiencyifperformedattheembodiedlevel.
2
Innervation:Multiplexingmanysensorsandlayingthem
outsensiblyinsideacomplexstructureisamanufacturing
challengethathasthepotentialtogreatlyincreaseperceptivecapabilitieswiththeabilitytolocalizeallsensingandactuation.
Encoding:Achievinghighinformationthroughputbysiftingthroughlargedataamountseffectivelybyleveragingopticalmodes,biologicalspiking,etc.isadatachallengethathasthepotentialtoprovidemassivedataratesforinformationfusionwithoutexplodingthepracticalwiringandassemblyrequirementstosensinghardware.
Motion
Traversingandnavigatingtheenvironmentisastapleofanysystem/body.Thisfeatisdonedirectlybylocomotion,orby
changingtheenvironmenttosuittheneedsofthesystem/
body.Thedegreesoffreedom(DOF)aredirectlycorrelatedtothecomplexityofthesystem,butcanchangeoveritslifetime,providingincreasedadaptabilityformovement.
ThemainresearchchallengesforMotionarelinkedtoward
thecurrenttechnologicaltrendstodominatetheenvironmentratherthanleveragingit.Beingabletoutilizeiteffectivelywillgreatlyincreasetheenergyefficiencyandsynergyofthebodyandtheenvironment.Themainmotionresearchchallengesarelistedbelow:
Agility:Increasingresponsivenessandpower,without
increasingDOF,willneedtobedonebysupplyingpoweranddatatoactuators;mimickingnature’sbottom-upapproachofself-assemblyallowsforfarmorearchitecturalcomplexity.
Endurance:Withstandingmanycyclesofuse,orusing
lessenergyforoperationsbybeingefficient,willneedthe
utilizationofmultifunctionalenergystorageandtransduction,highenergydensityfuels,storageandreleaseofelastic
energy,andcenterofmassadjustmentsduringlocomotion.
Growth:Changingtotheenvironment(orchangingthe
environment)byadding,subtracting,orchangingdimensions,bodysegments,and/orDOFwithincreasedabilitytoutilize
energywillbeamajorchallengeforthemachine’sbody.
Adaptation
Thenaturalworldhassolvedmanydesignproblemsvia
evolution.Artificialsystemscanbeimbuedwiththiscapability
byutilizingawidevarietyofcomputationaltechniquesdesignedtooptimallymodifythebodytotheenvironment.Anadditionalfeaturetobeexploredistheuseofcollectiveadaptation,in
whichmanybodiesactasawholetoperformspecifictasks,andthuscanbechangedtobetterfittheirenvironment.
ThemainresearchchallengesforAdaptationarecentered
aroundtheco-designofbrainandthebody.Whilenatural
systemsuseevolution,artificialonesadaptfromcentralized
computation.Efficientmanagementofenergyexpenditurealsowillbechallenging,buttakingadvantageofmaterialsscience
andadditivemanufacturingmayamelioratetheseengineeringcontradictions.Themainadaptationresearchchallengesarelistedbelow:
Learning:Logiclinkswillneedtobeincreasedbased
uponnewexperiencesandwillextendbeyondtraditionalneuralplasticitytothebodiesofrobots.Thebodiesas
wellasthebrainsoffuturerobotsmaylearnhowbestto
detectco-occurringfeaturesofexternalchallenges(or
internalchallenges,suchasinjury),andpreparethemselvesmorphologicallyandneurologicallytohandlethose
challengeswhenthere-occur.
Language:Verbalclaimscouldbedemonstratedphysicallyasaself-correctingmechanismforconfabulation;thistask
coulduseLargeLanguageModels(LLMs)asasupplement,butnotasoleuse–astheysufferfromhallucinationsandthegenerationofnon-factualverbalstatements.
Control:ByaddingDOF(andreducingthediscreet
boundariesbetweenthebodyandtheenvironment),the
controlofthesystemswillbeachallenge;therewillbe
kinematicredundancyforsystemswithtoomanyDOFfor
theirtasks(butaddingtheappropriateDOFwillallowfor
moreflexibility);thisinefficiencywillneedtobeaddressedbyselectivelyremovingDOF(oraddingmore).
ATapestryofChallenges
Perception,Motion,andAdaptationareinterdependenttopics
thatwillrequireconcurrentresearchefforts.Subjectssuchas
informationdensitywillneedtobeaddressedutilizingallthree
tobeeffective:Perceptiontoamplifyorfilterdata,Adaptation
tounderstandtheresultinginformation,andMotiontoadjust
forit.Indeed,organismschangebasedontheirenvironments
utilizingallthreeofthese.Inbiology,organismsfocusonrelevantstimuliutilizingsensingorgansanddevelopbehavioralresponseswhichfilteroutunimportantinputs.Theyrespondbasedon
theorganisms’needs,baseduponitsinternalstateandduetolimitedattention/energy.Theyleveragethepastexperiencesoftheorganismvialearningandmemory,whichleadstoinnateresponsesandreflexeswhichhelpsaveenergyandassistin
remodelingandgrowthoftheorganism.
Theinterdependentnatureofartificialsystemsalsorequires
featureintegration.Thesystemfirstselectsthefeaturesthatit
deemsuseful,thenextractsthem(ortheirinformation).Inordertousethenewfeatures,thesystemwillthenregularizethe
newlyacquiredfeaturesandoptimizealgorithmstoreproducethefeaturesforusebythesystem.Unlikebiologicalsystems,
however,theseprocessesconsumelargeamountsofenergyandaresubjectedtosignificantlatency.
Totackletheseinterconnectedresearchchallenges,aconcertedeffortmustbemadetofostercollaborationandcommunicationamongresearchersindiversefields.Increasingknowledge
transferbetweengroupsofresearcherswithdefinedtaxonomyandcommonlanguageisafirststeptothisgoal.Concerted
3
Testing,Evaluation,andValidation(TEV)willalsobeparamounttorealizingthisobjective.Transdisciplinaryresearch,whichincludesmaterialsscience,manufacturing,computerscience,mechanicalengineering,andEIdesignwillneedtobewoventogether.
ResearchOpportunities
Asengineeringadvancesproduceevermoresophisticated
artificialsystems,therearetremendousresearchopportunitiestolearnfrombiologicalones.Indeed,organismalbiologyalreadyshowstheabilitytofocusonrelevantstimuli,respondbasedonneeds,andleveragepastexperiences.Thesesystemscanalso
bestudiedtoobservetheirabilitytoidentifyandintegratenewfeaturesfromtheenvironment,perhapsrevealingkeyinsightstobeabletotranslatesuchfeaturestosyntheticsystems.Withtheadvancementsofotherfields,thereexistsmanyopportunities
forexcitingdevelopmentsandresearchtobeconductedinthefieldofembodiedintelligence.Someoftheseincludeadditivemanufacturing,neuromorphiccomputing,biohybridrobotics,autonomousmaterialsystems,andelectrochemistry.
ResearchTrajectory
Theworkshopparticipantsdevelopedatrajectoryforthe
researchopportunitiesidentifiedforthefieldofembodied
intelligencewithavisionforthe5-,10-,and20-yearhorizons.
Five-yeargoals
Intheimmediatefuture,EIwillaugmentexistingrobot
architectures.Theserobots,equippedwithsimplecontrolloops
informedbyanalogsensingandprocessinglayers,commanding
actuators(e.g.,continuum,compliant,standard)willbecapable
ofreducedenergyexpenditureduringmobilitytasksormore
dextrousperformanceinassemblytasksforexample.These
robotsmayfeature,asanexample,endoskeletalstructureswith
softactuatorsandskins,mediatingreconfigurabilitybasedontaskrequirements.Theuseofcompliantmanipulatorsandsoftskinswillimprovetheiragilityandendurancecomparedtonon-EIsystems.
KeyGoals:
?Developconsensusmetricsforenergyconsumptionduringstatetransitions(e.g.,trottingtocantoring),aswellasagility(e.g.,accelerationandturnradius).
?Establishfoundationalcontrolstrategiesusinglogicalbasisfunctionsforcoordinationoftasks.
Overthenextdecade,EIisexpectedtoleveragepriorresultsinanalogsense-act-respondfunctionstoproduceasetoflowlevelrobotsthatdemonstratetheseprincipleswithspecific
functions,akintoorgansor“polyps”seeninbiology(Figure5).Theresultsmaybeakintoreconfigurablesystemsofmodulesmediatedbyanalogcomputationallayersthatcanconfigure
for(asanexample)externaldexterityor(anotherexample)
internaloperationalefficiencyforexistingtasks.Importantly,thedevelopmentofbasisfunctionsforthesetofmoduleswillplayacriticalroleinthisphase,allowingrobotstobedynamically
assembledanddisassembledinresponsetoenvironmentalortaskchanges.
KeyGoals:
?Enumerationofagilityandendurancerequirementsfor
generalpurposerobotics(thesenumbersshouldbearrivedatbeyondjustEIcommunity)
?Defineasetoflow-levelEImodulesthataddresstherequirementsforagilityandendurance
?Algorithmsdevelopedthatprovidethebasisfor
coordinationbetweenthesemodules(digitalandanalogsolutions)
Long-Term(20Years)
Inthelongterm,EIresearcherswillunderstandhowtobestleveragelivingandsyntheticapproachestobuildlow-level
EImodules.Thebasisfunctionstocoordinatethelow-level
biohybridrobotstoautonomouslyassembleanddisassemble
themselvesintomorecomplex,high-levelrobotswillbeknown.Thesehigh-levelrobotsaremoresophisticated,capable
ofperformingcomplextasksandadaptingtochanging
environments.Thissynthesiswillenablethedevelopmentof
general-purposerobotscapableofgrowth,reconfiguration,andcontinuousadaptation.Logicalbasisfunctions(e.g.,autonomousmaterialcomputation)(Yamadaetal.,2022)willbefullyintegratedintotherobot’sarchitecture,enablingseamlesscoordination
acrossmultiplerobotsinvariousenvironments.Inadditiontothecoordinationoflow-levelrobots,wealsoanticipateautonomouscoordinationbetweenmultiple(anddifferent)high-levelrobots.
KeyGoals:
?Developautonomousmaterialsystems(AMS)thatallowforindependentsensinganddynamicreconfiguration.
?Implementneuron-basedcomputingforaccelerated
adaptationandcoordinationoflargerobotassemblies.
?Advancemultiplexedhigh-DOFactuatorarraystosupportsophisticatedmotionandstructuralintegrityduring
assemblyanddisassembly.
?Robustapproachestomaintaininglifeinrealworld
environments,aswellasmediatingtheirinterfacewithartifices.
?CommunicationprotocolsinadditiontoRFandvisualspectrumsignaling,suchasacousticandchemical.
OpportunitiestoAchievetheseGoals
Thisworkshopreportoutlinestheopportunitiesandapath
forwardforresearchinthefieldofembodiedintelligence.
OneaspectistheutilizationofDOF,bothtomanipulate
andunderstandthelimitations,thatwillbeintegraltothe
advancementofthefield.Challengesofmanufacturingand
computationalefficiencymustbeaddressedalongsidelong-termtestingprotocolsandenergyconsiderations.Aconcertedeffortmustbemadetobringtogetherthecommunityto
addressthesechallengesthroughinterdisciplinaryresearch
andcollaboration.Improvingcommunicationandidea-sharingwithinthecommunityisimperativeforthefutureofthisfield.Theparticipantsemphasizedtheimportanceofthefollowingtechnologyareas:
4
MaterialsandManufacturing:Advancesinmaterialsand
manufacturingwillenablerobotstobedesignedwithmore
heterogeneousmaterialswhichreduceandeventuallyeliminatetheneedforsubsystems.AutonomousMaterialSystemswill
allowforahighdegreeofadaptabilityinrobots,withreducedcostinmanufacturing.
AdaptationandComputation:Advancesincomputational
hardwarewillenablehyper-efficientcomputationsystemsthat
integratesseamlesslywithphysicalsubstrates,enablingmore
efficientandadaptivebehaviors.Thesesystemswilloperate
beyondcurrentdigitalcommunicationsandmemoryandratheruseanalogandbioticcomputationwithenhancedresponse
speedsand/orreducedpowerconsumption.Asmorecomplex
LargeLanguageModels(LLMs)aredevelopedandintegrated
withotherinteractionmodes,thecommunicationbetween
Perception,Adaptation,andMotiondomainswillbecomemore
efficientandcapable,allowingforhighercomplexityandcompute.
ApplicationFocusAreas
Thereexistmanyapplicationsforthesenewtechnologies.Focusareasfortheseuse-casesinclude:
DailyLifeandLaborReplacement:Societywillthriveinanewerainwhichroboticassistancereduceshumanwork,addressinglaborshortagesandremovingriskfromhumanworkers.
HealthcareandRobotics:Affordablesoftrobotsforpatientcarewillallowforpreciseandenhancedpatientrecovery,withhard
exoskeletonsutilizedforrehabilitationandemergencyresponse.
AdvancedTask-SpecificRobots:Low-costrobotswillbeavailableforuniquetasks,whichwillbesimplerbutmoreeffectivethancurrentrobots.
AcceleratingtheField
Theparticipantsdiscussedmeansforacceleratingthefield.Theynotethatanincreasedfocusonpartnershipswithindustrywill
yieldmoreefficientandviableadvances.Keyenablersinclude:
CollaborationandCommunity:Interdisciplinarycollaborationbetweenrobotics,biology,AI/MLwillneedtodeveloptolaythefoundationforubiquitoususeofrobotsinsociety.Trainingprogramswillalsoneedtomirrorthesecollaborations,with
holisticandcomprehensivelearningandteachingofthenextgenerationofresearchers.
MetricsandEvaluation:standardizedtestingandassessment
willbenecessarytostreamlinetheadvancementsinthefield.ADARPARoboticsChallengeforEmbodiedIntelligence,for
example,wouldpushthefrontiersofroboticsbypromoting
integrationofEmbodiedIntelligencewithinexistingrobots.
Successfulprojectsthatdisplayedtruemasteryofperception,motion,andadaptationwithlowenergyexpenditureswouldbecrucialtodriveforthfutureEmbodiedIntelligenceresearchanddevelopment.
5
Introduction
TheideathatthebodyandbrainareseparatedisanassumptionaboutmachineintelligencethatwasformedinthedistantpastbutcontinuestoconstrainhowweapproachAIandrobottechnologydevelopmenttoday.Thisreportisanattempttoformulatea
newviewofembodiedintelligence,freeofpriorassumptions,
topromotestepchangesinrobotics.Weanticipateprogress
inthisdomainwilldramaticallyimproveagility,endurance,anddamagetoleranceinourautomatedmachinery.Wenotethatinthisemergingfield,theterminologyusedtolabelitisconfusing:
ArtificialIntelligence,PhysicalIntelligence,EmbodiedIntelligence,aswellasseveralotherphrasesareusedsynonymouslyand
sometimesantonymously.Toaidinreadingthisreport,wemakeabriefattemptatclarifyingsomeofthemoreimportantterms:
?ArtificialIntelligence(AI)isusedtodescribealgorithms
represented,typically,insoftwarethatprovidesoutput(e.g.,recommendationsoractuations)basedoninputs(e.g.,
instrumentedmeasurementsorhumansuggestions).
?PhysicalIntelligence(PI),isusedforrobotsthathave
AIembeddedinfirmwareandoperatinglocallyon
autonomoushardwareaswellasasynonymforEmbodiedIntelligence.Fortheformerdefinition,PItendstoassume
athermodynamicallyclosedmachine(themassandenergyavailabletothemachinecomefromwithin).
?EmbodiedIntelligence(EI)isusedtodescribesystems
thatblurthelinesbetweenthemachine’sbodyandthe
environmentinwhichitisinteracting;ultimately,itwillbeananalogapproachtointeractingwiththeworld.EIenvisionsthermodynamicallyopenmachinesthatcanincorporatenewmassandenergytorecoverorexpandtheircapability.
EmbodiedIntelligenceblurstheinterfacebetweenmachineandenvironment,andbetweentheboundariesofinternal
componentsormodules.Inexternalinteractionswiththe
environment,forexample,EIsystemsallowthegravelbelowarobot’sfoottochangetheshapeofthefoot—storing
energy,addingstability,andbecomingpartofthemachinefor
millisecondspriortorelease.Aprojectileimpactingasurface
maypartiallyandreversiblyimbeditselfintothevolume,the
newlyformedobjectcanmakeadecisionwhethertoacceptor
rejectthenewformatthespeedofsound.Achemicalspraymaychangethemacromolecularorientationofthesurface,changingitsopticalandmechanicalproperties,displayingawarningto
humanteamsandchangingthetrajectoryofarobotawayor
towardsthesource.Internaltoamachine,multipleinteracting
low-levelroboticsubsystemscouldsynthesizemorecomplex
autonomy;thisfunctionisseenbiologicallyinzootic
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 夢想創(chuàng)業(yè)自媒體賬號轉(zhuǎn)讓及創(chuàng)業(yè)指導(dǎo)合作合同
- 婚前個人財(cái)務(wù)獨(dú)立管理與婚后財(cái)產(chǎn)保全協(xié)議
- 智能農(nóng)業(yè)植保無人機(jī)租賃與綠色防控服務(wù)合同
- 醫(yī)院DRGDIP支付改革下臨床路徑管理與優(yōu)化服務(wù)協(xié)議
- 離婚協(xié)議法院備案裁定合同范本
- 網(wǎng)絡(luò)直播平臺衍生分成補(bǔ)充協(xié)議
- 高三化學(xué)1-4離子反應(yīng)教學(xué)設(shè)計(jì)
- 校招新能源銷售面試題目及答案
- 網(wǎng)絡(luò)安全風(fēng)險(xiǎn)評估考核補(bǔ)充協(xié)議
- 校招軟件筆試題目及答案
- 新編應(yīng)用文寫作全套教學(xué)課件
- 四川省涼山州2022-2023學(xué)年七年級下學(xué)期期末歷史試題
- JBT 1306-2024 電動單梁起重機(jī)(正式版)
- QBT 2262-1996 皮革工業(yè)術(shù)語
- 《工程建設(shè)標(biāo)準(zhǔn)強(qiáng)制性條文電力工程部分2023年版》
- 心理干預(yù)各論家庭治療
- 《輸變電工程無人機(jī)傾斜攝影測量技術(shù)規(guī)程》
- 醫(yī)療廢物的分類及管理
- 2024氫氣長管拖車安全使用技術(shù)規(guī)范
- 《大學(xué)生創(chuàng)業(yè)基礎(chǔ)系列課程》課件-第14-4課-創(chuàng)業(yè)營銷理論-1學(xué)時(shí)
- 垃圾中轉(zhuǎn)站安全培訓(xùn)
評論
0/150
提交評論