




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省廣州市從化區重點中學2024屆畢業升學考試模擬卷數學卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.估計的運算結果應在哪個兩個連續自然數之間()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣42.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.3.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數字表示該位置上的小正方體的個數,那么該幾何體的主視圖是()A. B. C. D.4.下列運算正確的是()A.a﹣3a=2a B.(ab2)0=ab2 C.= D.×=95.已知圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,要使這兩圓沒有公共點,那么d的值可以?。ǎ〢.11; B.6; C.3; D.1.6.下面的圖形是軸對稱圖形,又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個7.某一公司共有51名員工(包括經理),經理的工資高于其他員工的工資,今年經理的工資從去年的200000元增加到225000元,而其他員工的工資同去年一樣,這樣,這家公司所有員工今年工資的平均數和中位數與去年相比將會()A.平均數和中位數不變 B.平均數增加,中位數不變C.平均數不變,中位數增加 D.平均數和中位數都增大8.如圖,為的直徑,為上兩點,若,則的大小為().A.60° B.50° C.40° D.20°9.圓錐的底面半徑為2,母線長為4,則它的側面積為()A.8π B.16π
C.4π D.4π10.如圖,l1、l2、l3兩兩相交于A、B、C三點,它們與y軸正半軸分別交于點D、E、F,若A、B、C三點的橫坐標分別為1、2、3,且OD=DE=1,則下列結論正確的個數是()①,②S△ABC=1,③OF=5,④點B的坐標為(2,2.5)A.1個 B.2個 C.3個 D.4個11.如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE12.平面直角坐標系中的點P(2﹣m,m)在第一象限,則m的取值范圍在數軸上可表示為()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算:.14.反比例函數y=的圖象是雙曲線,在每一個象限內,y隨x的增大而減小,若點A(–3,y1),B(–1,y2),C(2,y3)都在該雙曲線上,則y1、y2、y3的大小關系為__________.(用“<”連接)15.已知,則______16.從﹣2,﹣1,2,0這四個數中任取兩個不同的數作為點的坐標,該點不在第三象限的概率是_____.17.如圖,線段AB是⊙O的直徑,弦CD⊥AB,AB=8,∠CAB=22.5°,則CD的長等于___________________________.18.已知:a(a+2)=1,則a2+=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)閱讀下面材料,并解答問題.材料:將分式拆分成一個整式與一個分式(分子為整數)的和的形式.解:由分母為﹣x2+1,可設﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.解答:將分式拆分成一個整式與一個分式(分子為整數)的和的形式.試說明的最小值為1.20.(6分)如圖,△ABC中AB=AC,請你利用尺規在BC邊上求一點P,使△ABC~△PAC不寫畫法,(保留作圖痕跡).21.(6分)如圖,已知AD是的中線,M是AD的中點,過A點作,CM的延長線與AE相交于點E,與AB相交于點F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.22.(8分)小強的媽媽想在自家的院子里用竹籬笆圍一個面積為4平方米的矩形小花園,媽媽問九年級的小強至少需要幾米長的竹籬笆(不考慮接縫).小強根據他學習函數的經驗做了如下的探究.下面是小強的探究過程,請補充完整:建立函數模型:設矩形小花園的一邊長為x米,籬笆長為y米.則y關于x的函數表達式為________;列表(相關數據保留一位小數):根據函數的表達式,得到了x與y的幾組值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描點、畫函數圖象:如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據描出的點畫出該函數的圖象;觀察分析、得出結論:根據以上信息可得,當x=________時,y有最小值.由此,小強確定籬笆長至少為________米.23.(8分)如圖,已知直線AB與軸交于點C,與雙曲線交于A(3,)、B(-5,)兩點.AD⊥軸于點D,BE∥軸且與軸交于點E.求點B的坐標及直線AB的解析式;判斷四邊形CBED的形狀,并說明理由.24.(10分)如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y=(m≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于點C,點A(﹣2,3),點B(6,n).(1)求該反比例函數和一次函數的解析式;(2)求△AOB的面積;(3)若M(x1,y1),N(x2,y2)是反比例函數y=(m≠0)的圖象上的兩點,且x1<x2,y1<y2,指出點M、N各位于哪個象限.25.(10分)某電視臺的一檔娛樂性節目中,在游戲PK環節,為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.26.(12分)某市舉行“傳承好家風”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會從1000篇征文中隨機抽取了部分參賽征文,統計了它們的成績,并繪制了如圖不完整的兩幅統計圖表.征文比賽成績頻數分布表分數段頻數頻率60≤m<70380.3870≤m<80a0.3280≤m<90bc90≤m≤100100.1合計1請根據以上信息,解決下列問題:(1)征文比賽成績頻數分布表中c的值是;(2)補全征文比賽成績頻數分布直方圖;(3)若80分以上(含80分)的征文將被評為一等獎,試估計全市獲得一等獎征文的篇數.27.(12分)觀察下列等式:第1個等式:;第2個等式:;第3個等式:;第4個等式:;…請解答下列問題:按以上規律列出第5個等式:a5==;用含有n的代數式表示第n個等式:an==(n為正整數);求a1+a2+a3+a4+…+a100的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】根據二次根式的性質,可化簡得=﹣3=﹣2,然后根據二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之間.故選C.點睛:此題主要考查了二次根式的化簡和估算,關鍵是根據二次根式的性質化簡計算,再二次根式的估算方法求解.2、A【解析】
根據應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.3、A【解析】
由三視圖的俯視圖,從左到右依次找到最高層數,再由主視圖和俯視圖之間的關系可知,最高層高度即為主視圖高度.【詳解】解:幾何體從左到右的最高層數依次為1,2,3,所以主視圖從左到右的層數應該為1,2,3,故選A.【點睛】本題考查了三視圖的簡單性質,屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關系是解題關鍵.4、D【解析】
直接利用合并同類項法則以及二次根式的性質、二次根式乘法、零指數冪的性質分別化簡得出答案.【詳解】解:A、a﹣3a=﹣2a,故此選項錯誤;B、(ab2)0=1,故此選項錯誤;C、故此選項錯誤;D、×=9,正確.故選D.【點睛】此題主要考查了合并同類項以及二次根式的性質、二次根式乘法、零指數冪的性質,正確把握相關性質是解題關鍵.5、D【解析】∵圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,∴當d>4+7或d<7-4時,這兩個圓沒有公共點,即d>11或d<3,∴上述四個數中,只有D選項中的1符合要求.故選D.點睛:兩圓沒有公共點,存在兩種情況:(1)兩圓外離,此時圓心距>兩圓半徑的和;(1)兩圓內含,此時圓心距<大圓半徑-小圓半徑.6、B【解析】
根據軸對稱圖形和中心對稱圖形的定義對各個圖形進行逐一分析即可.【詳解】解:第一個圖形是軸對稱圖形,但不是中心對稱圖形;第二個圖形是中心對稱圖形,但不是軸對稱圖形;第三個圖形既是軸對稱圖形,又是中心對稱圖形;第四個圖形即是軸對稱圖形,又是中心對稱圖形;∴既是軸對稱圖形,又是中心對稱圖形的有兩個,故選:B.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180°后兩部分重合.7、B【解析】
本題考查統計的有關知識,找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數,平均數是指在一組數據中所有數據之和再除以數據的個數.【詳解】解:設這家公司除經理外50名員工的工資和為a元,則這家公司所有員工去年工資的平均數是元,今年工資的平均數是元,顯然;
由于這51個數據按從小到大的順序排列的次序完全沒有變化,所以中位數不變.
故選B.【點睛】本題主要考查了平均數,中位數的概念,要掌握這些基本概念才能熟練解題.同時注意到個別數據對平均數的影響較大,而對中位數和眾數沒影響.8、B【解析】
根據題意連接AD,再根據同弧的圓周角相等,即可計算的的大小.【詳解】解:連接,∵為的直徑,∴.∵,∴,∴.故選:B.【點睛】本題主要考查圓弧的性質,同弧的圓周角相等,這是考試的重點,應當熟練掌握.9、A【解析】
解:底面半徑為2,底面周長=4π,側面積=×4π×4=8π,故選A.10、C【解析】
①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;②設過點B且與y軸平行的直線交AC于點G,則S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G為AC中點,所以,S△AGB=S△BGC=,從而得結論;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得結論;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發生變化,所以④錯誤.【詳解】解:①如圖,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正確;②設過點B且與y軸平行的直線交AC于點G(如圖),則S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G為AC中點,∴S△ABG=S△BCG=,∴S△ABC=1,故②正確;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正確;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發生變化,故④錯誤;故選C.【點睛】本題考查了圖形與坐標的性質、三角形的面積求法、相似三角形的性質和判定、平行線等分線段定理、函數圖象交點等知識及綜合應用知識、解決問題的能力.考查學生數形結合的數學思想方法.11、B【解析】
先證明四邊形DBCE為平行四邊形,再根據矩形的判定進行解答.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴?DBCE為矩形,故本選項錯誤;B、∵對角線互相垂直的平行四邊形為菱形,不一定為矩形,故本選項正確;C、∵∠ADB=90°,∴∠EDB=90°,∴?DBCE為矩形,故本選項錯誤;D、∵CE⊥DE,∴∠CED=90°,∴?DBCE為矩形,故本選項錯誤,故選B.【點睛】本題考查了平行四邊形的性質與判定,矩形的判定等,熟練掌握相關的判定定理與性質定理是解題的關鍵.12、B【解析】
根據第二象限中點的特征可得:,解得:.在數軸上表示為:故選B.考點:(1)、不等式組;(2)、第一象限中點的特征二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
此題涉及特殊角的三角函數值、零指數冪、二次根式化簡,絕對值的性質.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.【詳解】原式.【點睛】此題考查特殊角的三角函數值,實數的運算,零指數冪,絕對值,解題關鍵在于掌握運算法則.14、y2<y1<y1.【解析】
先根據反比例函數的增減性判斷出2-m的符號,再根據反比例函數的性質判斷出此函數圖象所在的象限,由各點橫坐標的值進行判斷即可.【詳解】∵反比例函數y=的圖象是雙曲線,在每一個象限內,y隨x的增大而減小,∴2?m>0,∴此函數的圖象在一、三象限,∵?1<?1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案為y2<y1<y1.【點睛】本題考查的知識點是反比例函數圖像上點的坐標特征,解題的關鍵是熟練的掌握列反比例函數圖像上點的坐標特征.15、34【解析】∵,∴=,故答案為34.16、【解析】
列舉出所有情況,看在第四象限的情況數占總情況數的多少即可.【詳解】如圖:共有12種情況,在第三象限的情況數有2種,
故不再第三象限的共10種,
不在第三象限的概率為,
故答案為.【點睛】本題考查了樹狀圖法的知識,解題的關鍵是列出樹狀圖求出概率.17、4【解析】
連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出CE的長,進而得出CD.【詳解】連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴OC=AB=4,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴CE=OC=,∴CD=2CE=,故答案為.【點睛】考查了垂徑定理,等腰直角三角形的性質,以及圓周角定理,熟練掌握垂徑定理是解本題的關鍵.18、3【解析】
先根據a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+進行計算.【詳解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.【點睛】本題考查的是代數式求解,熟練掌握代入法是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)=x2+7+(2)見解析【解析】
(1)根據閱讀材料中的方法將分式拆分成一個整式與一個分式(分子為整數)的和的形式即可;(2)原式分子變形后,利用不等式的性質求出最小值即可.【詳解】(1)設﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,則原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;當x=0時,取得最小值0,∴當x=0時,x2+7+最小值為1,即原式的最小值為1.20、見解析【解析】
根據題意作∠CBA=∠CAP即可使得△ABC~△PAC.【詳解】如圖,作∠CBA=∠CAP,P點為所求.【點睛】此題主要考查相似三角形的尺規作圖,解題的關鍵是作一個角與已知角相等.21、(1)見解析;(2)見解析.【解析】
(1)先判定,可得,再根據是的中線,即可得到,依據,即可得出四邊形是平行四邊形;(2)先判定,即可得到,依據,可得根據是的中線,可得,進而得出四邊形是矩形.【詳解】證明:(1)是的中點,,,,又,,,又是的中線,,又,四邊形是平行四邊形;(2),,∴,即,,又,,又是的中線,,又四邊形是平行四邊形,四邊形是矩形.【點睛】本題主要考查了平行四邊形、矩形的判定,等腰三角形的性質以及相似三角形的性質的運用,解題時注意:對角線相等的平行四邊形是矩形.22、見解析【解析】
根據題意:一邊為x米,面積為4,則另一邊為米,籬笆長為y=2(x)=2x,由x═()2+4可得當x=2,y有最小值,則可求籬笆長.【詳解】根據題意:一邊為x米,面積為4,則另一邊為米,籬笆長為y=2(x)=2x∵x()2+()2=()2+4,∴x4,∴2x1,∴當x=2時,y有最小值為1,由此小強確定籬笆長至少為1米.故答案為:y=2x,2,1.【點睛】本題考查了反比例函數的應用,完全平方公式的運用,關鍵是熟練運用完全平方公式.23、(1)點B的坐標是(-5,-4);直線AB的解析式為:(2)四邊形CBED是菱形.理由見解析【解析】
(1)根據反比例函數圖象上點的坐標特征,將點A代入雙曲線方程求得k值,即利用待定系數法求得雙曲線方程;然后將B點代入其中,從而求得a值;設直線AB的解析式為y=mx+n,將A、B兩點的坐標代入,利用待定系數法解答;(2)由點C、D的坐標、已知條件“BE∥x軸”及兩點間的距離公式求得,CD=5,BE=5,且BE∥CD,從而可以證明四邊形CBED是平行四邊形;然后在Rt△OED中根據勾股定理求得ED=5,所以ED=CD,從而證明四邊形CBED是菱形.【詳解】解:(1)∵雙曲線過A(3,),∴.把B(-5,)代入,得.∴點B的坐標是(-5,-4)設直線AB的解析式為,將A(3,)、B(-5,-4)代入得,,解得:.∴直線AB的解析式為:(2)四邊形CBED是菱形.理由如下:點D的坐標是(3,0),點C的坐標是(-2,0).∵BE∥軸,∴點E的坐標是(0,-4).而CD=5,BE=5,且BE∥CD.∴四邊形CBED是平行四邊形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形24、(1)反比例函數的解析式為y=﹣;一次函數的解析式為y=﹣x+2;(2)8;(3)點M、N在第二象限,或點M、N在第四象限.【解析】
(1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,∴反比例函數的解析式為y=﹣;把點B(6,n)代入,可得n=﹣1,∴B(6,﹣1).把A(﹣2,3),B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 嵌入式設計中的用戶需求分析試題及答案
- 辦公桌上收納用品設計與應用考核試卷
- 針織行業法律法規與知識產權考核試卷
- 針織品行業智能制造與數據分析考核試卷
- 海上油氣平臺設計的智能化管理系統考核試卷
- 網絡技術基礎知識體系構建及試題及答案
- 路面施工技術要點試題及答案
- 紡織品印染工藝與應用考核試卷
- 小型項目的測試策略試題及答案
- 計算機四級考試資料匯集試題及答案
- 1員工培訓記錄表表格類
- 如何上好一節課
- 某大學論文答辯模板課件
- 50以內加減法練習題打印版(100題)
- 基礎體溫表格基礎體溫表
- ××會務組織重大失誤檢討書
- 鐵路詞匯中英文對照
- 煤炭項目建議書【范文參考】
- 撿垃圾環保公益活動策劃方案.docx
- 銀行支行裝飾裝修工程施工組織設計方案
- JTT 1344-2020純電動汽車維護、檢測、診斷技術規范_(高清-最新)
評論
0/150
提交評論