




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古五原縣第一中學2025年高三(54級)下學期第二周周測數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:“關于的方程有實根”,若為真命題的充分不必要條件為,則實數的取值范圍是()A. B. C. D.2.正項等差數列的前和為,已知,則=()A.35 B.36 C.45 D.543.已知函數,則不等式的解集是()A. B. C. D.4.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.5.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.6.將函數的圖象向右平移個周期后,所得圖象關于軸對稱,則的最小正值是()A. B. C. D.7.已知,,分別是三個內角,,的對邊,,則()A. B. C. D.8.已知的內角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.9.設是等差數列,且公差不為零,其前項和為.則“,”是“為遞增數列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.如圖所示的程序框圖輸出的是126,則①應為()A. B. C. D.11.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標為,則直線的方程為()A. B. C. D.12.已知向量,,則與共線的單位向量為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知,,則與的夾角為.14.某學校高一、高二、高三年級的學生人數之比為,現按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.15.記復數z=a+bi(i為虛數單位)的共軛復數為,已知z=2+i,則_____.16.已知多項式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=________,a5=________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)追求人類與生存環境的和諧發展是中國特色社會主義生態文明的價值取向.為了改善空氣質量,某城市環保局隨機抽取了一年內100天的空氣質量指數(AQI)的檢測數據,結果統計如表:AQI空氣質量優良輕度污染中度污染重度污染重度污染天數61418272510(1)從空氣質量指數屬于[0,50],(50,100]的天數中任取3天,求這3天中空氣質量至少有2天為優的概率;(2)已知某企業每天因空氣質量造成的經濟損失y(單位:元)與空氣質量指數x的關系式為,假設該企業所在地7月與8月每天空氣質量為優、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質量對應的概率以表中100天的空氣質量的頻率代替.(i)記該企業9月每天因空氣質量造成的經濟損失為X元,求X的分布列;(ii)試問該企業7月、8月、9月這三個月因空氣質量造成的經濟損失總額的數學期望是否會超過2.88萬元?說明你的理由.18.(12分)已知函數.(1)若函數,試討論的單調性;(2)若,,求的取值范圍.19.(12分)已知函數.(1)若函數在上單調遞增,求實數的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.20.(12分)已知,函數的最小值為1.(1)證明:.(2)若恒成立,求實數的最大值.21.(12分)已知函數(其中是自然對數的底數)(1)若在R上單調遞增,求正數a的取值范圍;(2)若f(x)在處導數相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側).22.(10分)已知數列的前項和為,.(1)求數列的通項公式;(2)若,為數列的前項和.求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】命題p:,為,又為真命題的充分不必要條件為,故2.C【解析】
由等差數列通項公式得,求出,再利用等差數列前項和公式能求出.【詳解】正項等差數列的前項和,,,解得或(舍),,故選C.本題主要考查等差數列的性質與求和公式,屬于中檔題.解等差數列問題要注意應用等差數列的性質()與前項和的關系.3.B【解析】
由導數確定函數的單調性,利用函數單調性解不等式即可.【詳解】函數,可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.本題主要考查了利用導數判定函數的單調性,根據單調性解不等式,屬于中檔題.4.B【解析】
求得直線的方程,聯立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經過點,故,即,即,即,兩邊除以得,解得.故,故選B.本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.5.D【解析】
先求出球心到四個支點所在球的小圓的距離,再加上側面三角形的高,即可求解.【詳解】設四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質可得,又由到底面的距離即為側面三角形的高,其中高為,所以球心到底面的距離為.故選:D.本題主要考查了空間幾何體的結構特征,以及球的性質的綜合應用,著重考查了數形結合思想,以及推理與計算能力,屬于基礎題.6.D【解析】
由函數的圖象平移變換公式求出變換后的函數解析式,再利用誘導公式得到關于的方程,對賦值即可求解.【詳解】由題意知,函數的最小正周期為,即,由函數的圖象平移變換公式可得,將函數的圖象向右平移個周期后的解析式為,因為函數的圖象關于軸對稱,所以,即,所以當時,有最小正值為.故選:D本題考查函數的圖象平移變換公式和三角函數誘導公式及正余弦函數的性質;熟練掌握誘導公式和正余弦函數的性質是求解本題的關鍵;屬于中檔題、常考題型.7.C【解析】
原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.本題主要考查正弦定理解三角形,三角函數恒等變換等基礎知識;考查運算求解能力,推理論證能力,屬于中檔題.8.C【解析】
由,化簡得到的值,根據余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當且僅當時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.本題主要考查了代數式的化簡,余弦定理,以及基本不等式的綜合應用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.9.A【解析】
根據等差數列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【詳解】是等差數列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數列為單調遞減數列,則必存在,使得當時,,則,不合乎題意;若,由且數列為單調遞增數列,則對任意的,,合乎題意.所以,“,”“為遞增數列”;必要性:設,當時,,此時,,但數列是遞增數列.所以,“,”“為遞增數列”.因此,“,”是“為遞增數列”的充分而不必要條件.故選:A.本題主要考查充分條件和必要條件的判斷,結合等差數列的前項和公式是解決本題的關鍵,屬于中等題.10.B【解析】試題分析:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環的條件.解:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環的條件.∵S=2+22+…+21=121,故①中應填n≤1.故選B點評:算法是新課程中的新增加的內容,也必然是新高考中的一個熱點,應高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤.11.A【解析】
設,,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【詳解】解:設,∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設出弦的兩端點坐標,代入拋物線方程相減后可把弦所在直線斜率與中點坐標建立關系.12.D【解析】
根據題意得,設與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,,則,所以,設與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.本題考查向量的坐標運算以及共線定理和單位向量的定義.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據已知條件,去括號得:,14.【解析】
根據分層抽樣的定義建立比例關系即可得到結論.【詳解】設抽取的樣本為,則由題意得,解得.故答案為:本題考查了分層抽樣的知識,算出抽樣比是解題的關鍵,屬于基礎題.15.3﹣4i【解析】
計算得到z2=(2+i)2=3+4i,再計算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.本題考查了復數的運算,共軛復數,意在考查學生的計算能力.16.164【解析】
只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【詳解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;則a4=+2+=5+8+3=16.故答案為:16,4.本題主要考查了多項式展開中的特定項的求解,可以用賦值法也可以用二項展開的通項公式求解,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)(i)詳見解析;(ii)會超過;詳見解析【解析】
(1)利用組合進行計算以及概率表示,可得結果.(2)(i)寫出X所有可能取值,并計算相對應的概率,列出表格可得結果.(ii)由(i)的條件結合7月與8月空氣質量所對應的概率,可得7月與8月經濟損失的期望和,最后7月、8月、9月經濟損失總額的數學期望與2.88萬元比較,可得結果.【詳解】(1)設ξ為選取的3天中空氣質量為優的天數,則P(ξ=2),P(ξ=3),則這3天中空氣質量至少有2天為優的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業9月的經濟損失的數學期望為30E(X),即30E(X)=9060元,設7月、8月每天因空氣質量造成的經濟損失為Y元,可得:,,,E(Y)=02201480320(元),所以該企業7月、8月這兩個月因空氣質量造成經濟損失總額的數學期望為320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月這三個月因空氣質量造成經濟損失總額的數學期望會超過2.88萬元.本題考查概率中的分布列以及數學期望,屬基礎題。18.(1)答案不唯一,具體見解析(2)【解析】
(1)由于函數,得出,分類討論當和時,的正負,進而得出的單調性;(2)求出,令,得,設,通過導函數,可得出在上的單調性和值域,再分類討論和時,的單調性,再結合,恒成立,即可求出的取值范圍.【詳解】解:(1)因為,所以,①當時,,在上單調遞減.②當時,令,則;令,則,所以在單調遞增,在上單調遞減.綜上所述,當時,在上單調遞減;當時,在上單調遞增,在上單調遞減.(2)因為,可知,,令,得.設,則.當時,,在上單調遞增,所以在上的值域是,即.當時,沒有實根,且,在上單調遞減,,符合題意.當時,,所以有唯一實根,當時,,在上單調遞增,,不符合題意.綜上,,即的取值范圍為.本題考查利用導數研究函數的單調性和根據恒成立問題求參數范圍,還運用了構造函數法,還考查分類討論思想和計算能力,屬于難題.19.(1);(2)見解析.【解析】
(1)求出導數,問題轉化為在上恒成立,利用導數求出的最小值即可求解;(2)分別設切點橫坐標為,利用導數的幾何意義寫出切線方程,問題轉化為證明兩直線重合,只需滿足有解即可,利用函數的導數及零點存在性定理即可證明存在.【詳解】(1),函數在上單調遞增等價于在上恒成立.令,得,所以在單調遞減,在單調遞增,則.因為,則在上恒成立等價于在上恒成立;又,所以,即.(2)設的切點橫坐標為,則切線方程為……①設的切點橫坐標為,則,切線方程為……②若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得即令,則所以,函數在區間上單調遞增,,使得時總有又時,在上總有解綜上,函數與總存在公切線.本題主要考查了利用導數研究函數的恒成立問題,導數的幾何意義,利用導數證明方程有解,屬于難題.20.(1)2;(2)【解析】分析:(1)將轉化為分段函數,求函數的最小值(2)分離
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商務會議參會人員管理與服務合同
- 外聘教師師德管理制度
- 定向軍士日常管理制度
- 鍋爐復習測試題
- 辨別公路工程常見陷阱的試題及答案
- 計算機網絡工程師試題及答案
- 能源經濟與管理知識梳理與試題
- 在全市中小學論壇上的發言:做有溫度的教育擺渡人
- 2025轉正述職報告范文(15篇)
- 農業經濟管理現代農業生產技術試題
- UPS電源項目總結分析報告
- DB11-T 1315-2025 北京市綠色建筑工程驗收標準
- 新生兒健康評估相關試題及答案
- 2025中考語文常考作文押題反反復復就考這10篇篇篇驚艷
- 2025至2030年液壓馬達行業深度研究報告
- 2024年花藝師現場制作考題及試題及答案
- 微型消防站設立方案
- 合同緊急聯系人協議
- 中西繪畫藝術風格對比分析
- 商業保險在風險管理中的應用
- 家庭法律顧問合同范本
評論
0/150
提交評論