2025屆江蘇省泰州市姜堰區高三5月校際聯合考試數學試題_第1頁
2025屆江蘇省泰州市姜堰區高三5月校際聯合考試數學試題_第2頁
2025屆江蘇省泰州市姜堰區高三5月校際聯合考試數學試題_第3頁
2025屆江蘇省泰州市姜堰區高三5月校際聯合考試數學試題_第4頁
2025屆江蘇省泰州市姜堰區高三5月校際聯合考試數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省泰州市姜堰區高三5月校際聯合考試數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記為數列的前項和數列對任意的滿足.若,則當取最小值時,等于()A.6 B.7 C.8 D.92.已知,,,,.若實數,滿足不等式組,則目標函數()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值3.在正項等比數列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.84.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.5.設實數x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.46.如圖1,《九章算術》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.7.已知實數,滿足,則的最大值等于()A.2 B. C.4 D.88.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.9.已知整數滿足,記點的坐標為,則點滿足的概率為()A. B. C. D.10.正項等比數列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.11.若為虛數單位,則復數,則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知正四面體的內切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.27二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.14.古代“五行”學認為:“物質分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質任意排成一列,但排列中屬性相克的兩種物質不相鄰,則這樣的排列方法有_________種.(用數字作答)15.如果拋物線上一點到準線的距離是6,那么______.16.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.18.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數k使得以線段為直徑的圓恰好經過坐標原點O?若存在,求出k的值;若不存在,請說明理由.19.(12分)已知函數.(1)當時,求不等式的解集;(2)若關于的不等式的解集包含,求實數的取值范圍.20.(12分)已知橢圓的離心率為是橢圓的一個焦點,點,直線的斜率為1.(1)求橢圓的方程;(1)若過點的直線與橢圓交于兩點,線段的中點為,是否存在直線使得?若存在,求出的方程;若不存在,請說明理由.21.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大小;(2)若的面積為,,求.22.(10分)在平面直角坐標系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設直線l:y=kx+m與橢圓C交于A,B兩點.①若A為橢圓的上頂點,M為線段AB中點,連接OM并延長交橢圓C于N,并且ON=62OM,求OB的長;②若原點O到直線l的距離為1,并且

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先令,找出的關系,再令,得到的關系,從而可求出,然后令,可得,得出數列為等差數列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當時,取最小值.故選:A【點睛】此題考查的是由數列的遞推式求數列的通項,采用了賦值法,屬于中檔題.2、B【解析】

判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數一定有最大值和最小值.故選:B【點睛】本題考查了目標函數最值是否存在問題,考查了數形結合思想,考查了不等式的性質應用.3、B【解析】

根據題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點睛】本題考查了等比數列的計算,意在考查學生的計算能力.4、C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質的應用,其中解答中熟記雙曲線的幾何性質,準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.5、C【解析】

畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數,z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.6、B【解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.7、D【解析】

畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據可行域求非線性目標函數的最值,考查數形結合的數學思想方法,屬于基礎題.8、A【解析】

利用平面向量的概念、平面向量的加法、減法、數乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.9、D【解析】

列出所有圓內的整數點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數,所以所有滿足條件的點是位于圓(含邊界)內的整數點,滿足條件的整數點有共37個,滿足的整數點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學生的應用能力.10、D【解析】

設等比數列的公比為q,,運用等比數列的性質和通項公式,以及等差數列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數列的中項性質和等比數列的通項公式的應用,其中解答中熟記等比數列通項公式,合理利用等比數列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.11、B【解析】

首先根據特殊角的三角函數值將復數化為,求出,再利用復數的幾何意義即可求解.【詳解】,,則在復平面內對應的點的坐標為,位于第二象限.故選:B【點睛】本題考查了復數的幾何意義、共軛復數的概念、特殊角的三角函數值,屬于基礎題.12、D【解析】

設正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內切球的半徑,在中,根據勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設內切球的半徑為,內切球的球心為,則,解得:;設外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】

作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.14、1.【解析】試題分析:由題意,可看作五個位置排列五種事物,第一位置有五種排列方法,不妨假設排上的是金,則第二步只能從土與水兩者中選一種排放,故有兩種選擇不妨假設排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故總的排列方法種數有5×2×1×1×1=1.考點:排列、組合及簡單計數問題.點評:本題考查排列排列組合及簡單計數問題,解答本題關鍵是理解題設中的限制條件及“五行”學說的背景,利用分步原理正確計數,本題較抽象,計數時要考慮周詳.15、【解析】

先求出拋物線的準線方程,然后根據點到準線的距離為6,列出,直接求出結果.【詳解】拋物線的準線方程為,由題意得,解得.∵點在拋物線上,∴,∴,故答案為:.【點睛】本小題主要考查拋物線的定義,屬于基礎題.16、【解析】

轉化為,利用二倍角公式可求解得,結合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明見詳解;(Ⅱ).【解析】

(Ⅰ)取中點為,根據幾何關系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標原點,建立空間直角坐標系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點,連接,.如下圖所示:因為,分別是線段和的中點,所以是梯形的中位線,所以.又,所以.因為,,所以四邊形為平行四邊形,所以.所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因為,且平面,故可以為原點,的方向為軸正方向建立如圖所示的空間直角坐標系,如下圖所示:不妨設,則,所以,,,,.所以,,.設平面的法向量為,則所以可取.設直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.18、(1);(2)存在,當時,以線段為直徑的圓恰好經過坐標原點O.【解析】

(1)設橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實數使得以線段為直徑的圓恰好經過坐標原點.設點,,,,將直線的方程代入,化簡,利用韋達定理,結合向量的數量積為0,轉化為:.求解即可.【詳解】解:(1)設橢圓的焦半距為c,則由題設,得,解得,所以,故所求橢圓C的方程為(2)存在實數k使得以線段為直徑的圓恰好經過坐標原點O.理由如下:設點,,將直線的方程代入,并整理,得.(*)則,因為以線段為直徑的圓恰好經過坐標原點O,所以,即.又,于是,解得,經檢驗知:此時(*)式的,符合題意.所以當時,以線段為直徑的圓恰好經過坐標原點O【點睛】本題考查橢圓方程的求法,橢圓的簡單性質,直線與橢圓位置關系的綜合應用,考查計算能力以及轉化思想的應用,屬于中檔題.19、(1)(2)【解析】

(1)按進行分類,得到等價不等式組,分別解出解集,再取并集,得到答案;(2)將問題轉化為在時恒成立,按和分類討論,分別得到不等式恒成立時對應的的范圍,再取交集,得到答案.【詳解】解:(1)當時,等價于或或,解得或或,所以不等式的解集為:.(2)依題意即在時恒成立,當時,,即,所以對恒成立∴,得;當時,,即,所以對任意恒成立,∴,得∴,綜上,.【點睛】本題考查分類討論解絕對值不等式,分類討論研究不等式恒成立問題,屬于中檔題.20、(1)(1)不存在,理由見解析【解析】

(1)利用離心率和過點,列出等式,即得解(1)設的方程為,與橢圓聯立,利用韋達定理表示中點N的坐標,用點坐標表示,利用韋達關系代入,得到關于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當直線的斜率不存在時,,不符合題意.當的斜率存在時,設的方程為,聯立得,設,則,,,即.設,則,,,則,即,整理得,此方程無解,故的方程不存在.綜上所述,不存在直線使得.【點睛】本題考查了直線和橢圓綜合,考查了弦長和中點問題,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于較難題.21、(1);(2).【解析】試題分析:(1)利用已知及平面向量數量積運算可得,利用正弦定理可得,結合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論