




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市莘莊中學2025屆高三2月開學模擬(網絡考試)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π2.已知為等差數列,若,,則()A.1 B.2 C.3 D.63.已知實數滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.114.若雙曲線:繞其對稱中心旋轉后可得某一函數的圖象,則的離心率等于()A. B. C.2或 D.2或5.展開式中x2的系數為()A.-1280 B.4864 C.-4864 D.12806.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.7.已知集合,,,則集合()A. B. C. D.8.已知函數f(x)=,若關于x的方程f(x)=kx-恰有4個不相等的實數根,則實數k的取值范圍是()A. B.C. D.9.設復數滿足,在復平面內對應的點為,則不可能為()A. B. C. D.10.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.11.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.412.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數為()A.1 B.2 C.3 D.0二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,所對的邊分別邊,且,設角的角平分線交于點,則的值最小時,___.14.已知點是拋物線的焦點,,是該拋物線上的兩點,若,則線段中點的縱坐標為__________.15.已知隨機變量服從正態分布,若,則_________.16.己知雙曲線的左、右焦點分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若函數的圖象與軸有且只有一個公共點,求實數的取值范圍;(2)若對任意成立,求實數的取值范圍.18.(12分)已知函數,其導函數為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.19.(12分)已知橢圓的左焦點為F,上頂點為A,直線AF與直線垂直,垂足為B,且點A是線段BF的中點.(I)求橢圓C的方程;(II)若M,N分別為橢圓C的左,右頂點,P是橢圓C上位于第一象限的一點,直線MP與直線交于點Q,且,求點P的坐標.20.(12分)設點,動圓經過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設,,求證:為定值.21.(12分)已知函數,且曲線在處的切線方程為.(1)求的極值點與極值.(2)當,時,證明:.22.(10分)如圖1,四邊形為直角梯形,,,,,,為線段上一點,滿足,為的中點,現將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
兩函數的圖象如圖所示,則圖中|MN|最小,設M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.2、B【解析】
利用等差數列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數列通項公式求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.3、A【解析】
根據約束條件畫出可行域,再將目標函數化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變為為斜率為-3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項【點睛】本題考查線性規劃求一次相加的目標函數,屬于常規題型,是簡單題.4、C【解析】
由雙曲線的幾何性質與函數的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質與函數的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數的概念,考查了分類討論的數學思想.5、A【解析】
根據二項式展開式的公式得到具體為:化簡求值即可.【詳解】根據二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點睛】求二項展開式有關問題的常見類型及解題策略:(1)求展開式中的特定項.可依據條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第項,由特定項得出值,最后求出其參數.6、B【解析】
由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎題.7、D【解析】
根據集合的混合運算,即可容易求得結果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎題.8、D【解析】
由已知可將問題轉化為:y=f(x)的圖象和直線y=kx-有4個交點,作出圖象,由圖可得:點(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時,k=;結合圖象即可得解.【詳解】若關于x的方程f(x)=kx-恰有4個不相等的實數根,則y=f(x)的圖象和直線y=kx-有4個交點.作出函數y=f(x)的圖象,如圖,故點(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當直線y=kx-和y=lnx相切時,設切點橫坐標為m,則k==,∴m=.此時,k==,f(x)的圖象和直線y=kx-有3個交點,不滿足條件,故所求k的取值范圍是,故選D..【點睛】本題主要考查了函數與方程思想及轉化能力,還考查了導數的幾何意義及計算能力、觀察能力,屬于難題.9、D【解析】
依題意,設,由,得,再一一驗證.【詳解】設,因為,所以,經驗證不滿足,故選:D.【點睛】本題主要考查了復數的概念、復數的幾何意義,還考查了推理論證能力,屬于基礎題.10、D【解析】
“是的充分不必要條件”等價于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點睛】利用原命題與其逆否命題的等價性,對是的充分不必要條件進行命題轉換,使問題易于求解.11、D【解析】
圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關系,考查運算能力,屬于基礎題.12、C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數.【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因為,則,由余弦定理得:,當且僅當時取等號,又因為,,所以.故答案為:.【點睛】本題考查余弦定理和正弦定理的應用,以及基本不等式求最值,考查計算能力.14、2【解析】
運用拋物線的定義將拋物線上的點到焦點距離等于到準線距離,然后求解結果.【詳解】拋物線的標準方程為:,則拋物線的準線方程為,設,,則,所以,則線段中點的縱坐標為.故答案為:【點睛】本題考查了拋物線的定義,由拋物線定義將點到焦點距離轉化為點到準線距離,需要熟練掌握定義,并能靈活運用,本題較為基礎.15、0.4【解析】
因為隨機變量ζ服從正態分布,利用正態曲線的對稱性,即得解.【詳解】因為隨機變量ζ服從正態分布所以正態曲線關于對稱,所.【點睛】本題考查了正態分布曲線的對稱性在求概率中的應用,考查了學生概念理解,數形結合,數學運算的能力,屬于基礎題.16、【解析】
由,則,所以點,因為,可得,點坐標化簡為,代入雙曲線的方程求解.【詳解】設,則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點睛】本題主要考查了直線與雙曲線的位置關系,及三角恒等變換,還考查了運算求解的能力和數形結合的思想,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求出及其導函數,利用研究的單調性和最值,根據零點存在定理和零點定義可得的范圍.(2)令,題意說明時,恒成立.同樣求出導函數,由研究的單調性,通過分類討論可得的單調性得出結論.【詳解】解(1)函數所以討論:①當時,無零點;②當時,,所以在上單調遞增.取,則又,所以,此時函數有且只有一個零點;③當時,令,解得(舍)或當時,,所以在上單調遞減;當時,所以在上單調遞增.據題意,得,所以(舍)或綜上,所求實數的取值范圍為.(2)令,根據題意知,當時,恒成立.又討論:①若,則當時,恒成立,所以在上是增函數.又函數在上單調遞增,在上單調遞增,所以存在使,不符合題意.②若,則當時,恒成立,所以在上是增函數,據①求解知,不符合題意.③若,則當時,恒有,故在上是減函數,于是“對任意成立”的充分條件是“”,即,解得,故綜上,所求實數的取值范圍是.【點睛】本題考查函數零點問題,考查不等式恒成立問題,考查用導數研究函數的單調性.解題關鍵是通過分類討論研究函數的單調性.本題難度較大,考查掌握轉化與化歸思想,考查學生分析問題解決問題的能力.18、(1)(2)證明見解析【解析】
(1)求出的導數,根據導函數的性質判斷函數的單調性,再利用函數單調性解函數型不等式;(2)構造函數,利用導數判斷在區間上單調遞減,結合可得結果.【詳解】(1)若,則.設,則,所以在上單調遞減,在上單調遞增.又當時,;當時,;當時,,所以所以在上單調遞增,又,所以不等式的解集為.(2)設,再令,,在上單調遞減,又,,,,,.即【點睛】本題考查利用函數的導數來判斷函數的單調性,再利用函數的單調性來解決不等式問題,屬于較難題.19、(I).(II)【解析】
(I)寫出坐標,利用直線與直線垂直,得到.求出點的坐標代入,可得到的一個關系式,由此求得和的值,進而求得橢圓方程.(II)設出點的坐標,由此寫出直線的方程,從而求得點的坐標,代入,化簡可求得點的坐標.【詳解】(I)∵橢圓的左焦點,上頂點,直線AF與直線垂直∴直線AF的斜率,即①又點A是線段BF的中點∴點的坐標為又點在直線上∴②∴由①②得:∴∴橢圓的方程為.(II)設由(I)易得頂點M、N的坐標為∴直線MP的方程是:由得:又點P在橢圓上,故∴∴∴或(舍)∴∴點P的坐標為【點睛】本小題主要考查直線和圓錐曲線的位置關系,考查兩直線垂直的條件,考查向量數量積的運算.屬于中檔題.在解題過程中,首先閱讀清楚題意,題目所敘述的坐標、所敘述的直線是怎么得到的,向量的數量積對應的坐標都有哪一些,應該怎么得到,這些在讀題的時候需要分析清楚.20、(1);(2)見解析.【解析】
(1)已知點軌跡是以為焦點,直線為準線的拋物線,由此可得曲線的方程;(2)設直線方程為,,則,設,由直線方程與拋物線方程聯立消元應用韋達定理得,,由,,用橫坐標表示出,然后計算,并代入,可得結論.【詳解】(1)設動圓圓心,由拋物線定義知:點軌跡是以為焦點,直線為準線的拋物線,設其方程為,則,解得.∴曲線的方程為;(2)證明:設直線方程為,,則,設,由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設而不求的思想方法,即設交點坐標,設直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應用韋達定理得,,代入題中其他條件所求式子中化簡變形.21、(1)極小值點為,極小值為,無極大值;(2)證明見解析【解析】
先對函數求導,結合已知及導數的幾何意義可求,結合單調性即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 簡單醫療知識培訓
- 2025年中考報名工作培訓會
- 2024年泵站自動化資金需求報告代可行性研究報告
- 《生產運營管理》 課件 第8章-生產計劃和作業計劃
- 2023甘肅省輔警招聘備考題庫及答案
- 2022年山西醫科大學汾陽學院自考英語(二)練習題(附答案解析)
- 河南省許昌市建安區第三高級中學2023-2024學年高一下學期期末模擬考試(二)政治試卷
- 行政辦公設備使用操作規程?
- 《醫學英語視聽說第二版》課件unit6
- 2025年公共與私法考試試題及答案
- 消除艾滋病、梅毒和乙肝母嬰傳播項目工作制度及流程(模板)
- 2024風電建設項目水土保持技術標準
- 高中英語新課標3000詞匯表(新高考)
- 大豆病蟲害的綜合防治
- 妊娠期用藥安全課件
- 體育場館消防控制室操作規范
- 《中國政法大學》課件
- 國開學習網《大數據技術概論》形考任務1-4答案
- 英語研究報告范文
- 右膝關節置換術護理個案
- 高中數學教師資格考試學科知識與教學能力試題及答案指導(2024年)
評論
0/150
提交評論