




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
貴州省鳳岡縣第二中學(xué)2025屆高三質(zhì)量監(jiān)測(cè)(一)數(shù)學(xué)試題試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線:的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則為()A. B.40 C.16 D.2.正項(xiàng)等比數(shù)列中,,且與的等差中項(xiàng)為4,則的公比是()A.1 B.2 C. D.3.已知,則()A. B. C. D.24.已知是函數(shù)圖象上的一點(diǎn),過作圓的兩條切線,切點(diǎn)分別為,則的最小值為()A. B. C.0 D.5.將函數(shù)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,再將圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則函數(shù)圖象的一個(gè)對(duì)稱中心為()A. B. C. D.6.集合,,則()A. B. C. D.7.給出下列四個(gè)命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個(gè)數(shù)是()A. B. C. D.8.在中,是的中點(diǎn),,點(diǎn)在上且滿足,則等于()A. B. C. D.9.如圖,在平面四邊形中,滿足,且,沿著把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.10.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.311.下列判斷錯(cuò)誤的是()A.若隨機(jī)變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機(jī)變量服從二項(xiàng)分布:,則D.是的充分不必要條件12.已知集合,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有編號(hào)分別為1,2,3,4,5的5個(gè)紅球和5個(gè)黑球,從中隨機(jī)取出4個(gè),則取出球的編號(hào)互不相同的概率為_______________.14.設(shè)函數(shù),,其中.若存在唯一的整數(shù)使得,則實(shí)數(shù)的取值范圍是_____.15.定義在上的偶函數(shù)滿足,且,當(dāng)時(shí),.已知方程在區(qū)間上所有的實(shí)數(shù)根之和為.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則__________,__________.16.(5分)國(guó)家禁毒辦于2019年11月5日至12月15日在全國(guó)青少年毒品預(yù)防教育數(shù)字化網(wǎng)絡(luò)平臺(tái)上開展2019年全國(guó)青少年禁毒知識(shí)答題活動(dòng),活動(dòng)期間進(jìn)入答題專區(qū),點(diǎn)擊“開始答題”按鈕后,系統(tǒng)自動(dòng)生成20道題.已知某校高二年級(jí)有甲、乙、丙、丁、戊五位同學(xué)在這次活動(dòng)中答對(duì)的題數(shù)分別是,則這五位同學(xué)答對(duì)題數(shù)的方差是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在角中,角A、B、C的對(duì)邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長(zhǎng).18.(12分)已知函數(shù),不等式的解集為.(1)求實(shí)數(shù),的值;(2)若,,,求證:.19.(12分)如圖1,與是處在同-個(gè)平面內(nèi)的兩個(gè)全等的直角三角形,,,連接是邊上一點(diǎn),過作,交于點(diǎn),沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設(shè)若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.20.(12分)如圖所示,在四棱錐中,∥,,點(diǎn)分別為的中點(diǎn).(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.21.(12分)已知函數(shù)有兩個(gè)零點(diǎn).(1)求的取值范圍;(2)是否存在實(shí)數(shù),對(duì)于符合題意的任意,當(dāng)時(shí)均有?若存在,求出所有的值;若不存在,請(qǐng)說明理由.22.(10分)在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:(1)平面平面;(2)若為棱上一點(diǎn),且與平面所成角的正弦值為,求二面角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
如圖所示,過分別作于,于,利用和,聯(lián)立方程組計(jì)算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【點(diǎn)睛】本題考查了拋物線中弦長(zhǎng)問題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.2.D【解析】
設(shè)等比數(shù)列的公比為q,,運(yùn)用等比數(shù)列的性質(zhì)和通項(xiàng)公式,以及等差數(shù)列的中項(xiàng)性質(zhì),解方程可得公比q.【詳解】由題意,正項(xiàng)等比數(shù)列中,,可得,即,與的等差中項(xiàng)為4,即,設(shè)公比為q,則,則負(fù)的舍去,故選D.【點(diǎn)睛】本題主要考查了等差數(shù)列的中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式的應(yīng)用,其中解答中熟記等比數(shù)列通項(xiàng)公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運(yùn)算能力,屬于基礎(chǔ)題.3.B【解析】
結(jié)合求得的值,由此化簡(jiǎn)所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點(diǎn)睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡(jiǎn)求值,考查二倍角公式,屬于中檔題.4.C【解析】
先畫出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因?yàn)樵谏蠁握{(diào)遞增,且,所以當(dāng)時(shí),;當(dāng)時(shí),,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時(shí)等號(hào)成立).故選:C【點(diǎn)睛】此題考查的是兩個(gè)向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬于難題.5.D【解析】
根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個(gè)選項(xiàng)代入逐一判斷即可.【詳解】解:圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,得到再將圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,故選:D【點(diǎn)睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性質(zhì),基礎(chǔ)題.6.A【解析】
計(jì)算,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.7.B【解析】
①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個(gè)是假命題,故①錯(cuò)誤;當(dāng)內(nèi)角為時(shí),不是象限角,故②錯(cuò)誤;由特稱命題的否定是全稱命題知③正確;因?yàn)?,所以,所以“”是“”的必要條件,故④正確.故選:B.【點(diǎn)睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識(shí),是一道基礎(chǔ)題.8.B【解析】
由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點(diǎn).②性質(zhì):或取得最小值③坐標(biāo)法:P點(diǎn)坐標(biāo)是三個(gè)頂點(diǎn)坐標(biāo)的平均數(shù).9.C【解析】
過作于,連接,易知,,從而可證平面,進(jìn)而可知,當(dāng)最大時(shí),取得最大值,取的中點(diǎn),可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因?yàn)?,所以平面,所以,?dāng)最大時(shí),取得最大值,取的中點(diǎn),則,所以,因?yàn)?,所以點(diǎn)在以為焦點(diǎn)的橢圓上(不在左右頂點(diǎn)),其中長(zhǎng)軸長(zhǎng)為10,焦距長(zhǎng)為8,所以的最大值為橢圓的短軸長(zhǎng)的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點(diǎn)睛】本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.10.A【解析】
由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).11.D【解析】
根據(jù)正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識(shí),依次對(duì)四個(gè)選項(xiàng)加以分析判斷,進(jìn)而可求解.【詳解】對(duì)于選項(xiàng),若隨機(jī)變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對(duì)稱性,有,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),已知直線平面,直線平面,則當(dāng)時(shí)一定有,充分性成立,而當(dāng)時(shí),不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),若隨機(jī)變量服從二項(xiàng)分布:,則,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故充分性不成立;若,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項(xiàng)不正確,符合題意.故選:D【點(diǎn)睛】本題考查正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識(shí),考查理解辨析能力與運(yùn)算求解能力,屬于基礎(chǔ)題.12.D【解析】
根據(jù)集合的基本運(yùn)算即可求解.【詳解】解:,,,則故選:D.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:從編號(hào)分別為1,1,3,4,5的5個(gè)紅球和5個(gè)黑球,從中隨機(jī)取出4個(gè),有種不同的結(jié)果,由于是隨機(jī)取出的,所以每個(gè)結(jié)果出現(xiàn)的可能性是相等的;設(shè)事件為“取出球的編號(hào)互不相同”,則事件包含了個(gè)基本事件,所以.考點(diǎn):1.計(jì)數(shù)原理;1.古典概型.14.【解析】
根據(jù)分段函數(shù)的解析式畫出圖像,再根據(jù)存在唯一的整數(shù)使得數(shù)形結(jié)合列出臨界條件滿足的關(guān)系式求解即可.【詳解】解:函數(shù),且畫出的圖象如下:因?yàn)?且存在唯一的整數(shù)使得,故與在時(shí)無交點(diǎn),,得;又,過定點(diǎn)又由圖像可知,若存在唯一的整數(shù)使得時(shí),所以,存在唯一的整數(shù)使得所以.根據(jù)圖像可知,當(dāng)時(shí),恒成立.綜上所述,存在唯一的整數(shù)使得,此時(shí)故答案為:【點(diǎn)睛】本題主要考查了數(shù)形結(jié)合分析參數(shù)范圍的問題,需要根據(jù)題意分別分析定點(diǎn)右邊的整數(shù)點(diǎn)中為滿足條件的唯一整數(shù),再數(shù)形結(jié)合列出時(shí)的不等式求的范圍.屬于難題.15.24【解析】
根據(jù)函數(shù)為偶函數(shù)且,所以的周期為,的實(shí)數(shù)根是函數(shù)和函數(shù)的圖象的交點(diǎn)的橫坐標(biāo),在平面直角坐標(biāo)系中畫出函數(shù)圖象,根據(jù)函數(shù)的對(duì)稱性可得所有實(shí)數(shù)根的和為,從而可得參數(shù)的值,最后求出函數(shù)的解析式,代入求值即可.【詳解】解:因?yàn)闉榕己瘮?shù)且,所以的周期為.因?yàn)闀r(shí),,所以可作出在區(qū)間上的圖象,而方程的實(shí)數(shù)根是函數(shù)和函數(shù)的圖象的交點(diǎn)的橫坐標(biāo),結(jié)合函數(shù)和函數(shù)在區(qū)間上的簡(jiǎn)圖,可知兩個(gè)函數(shù)的圖象在區(qū)間上有六個(gè)交點(diǎn).由圖象的對(duì)稱性可知,此六個(gè)交點(diǎn)的橫坐標(biāo)之和為,所以,故.因?yàn)椋?故.故答案為:;【點(diǎn)睛】本題考查函數(shù)的奇偶性、周期性、對(duì)稱性的應(yīng)用,函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.16.2【解析】
由這五位同學(xué)答對(duì)的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)1.【解析】
(1)由正弦定理化簡(jiǎn)已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長(zhǎng)的值.【詳解】(1)由題意,在中,因?yàn)椋烧叶ɡ恚傻胹inAsinB=sinBcosA,又因?yàn)?,可得sinB≠0,所以sinA=cosA,即:tanA=,因?yàn)锳∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長(zhǎng)a+b+c=5+7=1.【點(diǎn)睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.18.(1),.(2)見解析【解析】
(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立.故,即.【點(diǎn)睛】考查絕對(duì)值不等式的解法以及用均值定理證明不等式,中檔題.19.(1)證明見解析(2)(3)【解析】
根據(jù)折疊圖形,,由線面垂直的判定定理可得平面,再根據(jù)平面,得到.(2)根據(jù),以為坐標(biāo)原點(diǎn),為軸建立空間直角坐標(biāo)系,根據(jù),可知,,表示相應(yīng)點(diǎn)的坐標(biāo),分別求得平面與平面的法向量,代入求解.設(shè)所求幾何體的體積為,設(shè)為高,則,表示梯形BEFD和ABD的面積由,再利用導(dǎo)數(shù)求最值.【詳解】(1)證明:不妨設(shè)與的交點(diǎn)為與的交點(diǎn)為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因?yàn)槠矫妫?...(2)解:依題意,有平面平面,又平面,則有平面,,又由題意知,如圖所示:以為坐標(biāo)原點(diǎn),為軸建立如圖所示的空間直角坐標(biāo)系由題意知由可知,則則有,,設(shè)平面與平面的法向量分別為則有則所以因?yàn)?,解得設(shè)所求幾何體的體積為,設(shè),則,當(dāng)時(shí),,當(dāng)時(shí),在是增函數(shù),在上是減函數(shù)當(dāng)時(shí),有最大值,即六面體的體積的最大值是【點(diǎn)睛】本題主要考查線線垂直,線面垂直,面面垂直的轉(zhuǎn)化,二面角的向量求法和空間幾何體的體積,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.20.(1)證明見解析(2)【解析】
(1)根據(jù)題意,連接交于,連接,利用三角形全等得,進(jìn)而可得結(jié)論;(2)建立空間直角坐標(biāo)系,利用向量求得平面的法向量,進(jìn)而可得二面角的余弦值.【詳解】(1)證明:連接交于,連接,,≌,且,面面,面,(2)取中點(diǎn),連,.由,面面面,又由,以分別為軸建立如圖所示空間直角坐標(biāo)系,設(shè),則,,,,,,為面的一個(gè)法向量,設(shè)面的法向量為,依題意,即,令,解得,所以,平面的法向量,,又因二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時(shí)要認(rèn)真審題,注意中位線和向量法的合理運(yùn)用,屬于基礎(chǔ)題.21.(1);(2).【解析】
(1)對(duì)求導(dǎo),對(duì)參數(shù)進(jìn)行分類討論,根據(jù)函數(shù)單調(diào)性即可求得.(2)先根據(jù),得,再根據(jù)零點(diǎn)解得,轉(zhuǎn)化不等式得,令,化簡(jiǎn)得,因此,,最后根據(jù)導(dǎo)數(shù)研究對(duì)應(yīng)函數(shù)單調(diào)性,確定對(duì)應(yīng)函數(shù)最值,即得取值集合.【詳解】(1),當(dāng)時(shí),對(duì)恒成立,與題意不符,當(dāng),,∴時(shí),即函數(shù)在單調(diào)遞增,在單調(diào)遞減,∵和時(shí)均有,∴,解得:,綜上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省棗莊市現(xiàn)代實(shí)驗(yàn)學(xué)校2024-2025學(xué)年高考原創(chuàng)信息試卷物理試題(三)含解析
- 山西省忻州市岢嵐縣中學(xué)2025屆高三下學(xué)期教學(xué)質(zhì)量調(diào)研考試(二模)歷史試題試卷含解析
- 四川托普信息技術(shù)職業(yè)學(xué)院《NoSQ數(shù)據(jù)庫原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海外國(guó)語大秀洲外國(guó)語校2024-2025學(xué)年初三4月階段性測(cè)試語文試題含解析
- 西北師范大學(xué)《地方文化研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢科技大學(xué)《印度文化遺產(chǎn)賞析》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海師范大學(xué)《中國(guó)古代文學(xué)I》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇省高郵市陽光雙語初中重點(diǎn)名校2025年初三最后一考生物試題試卷含解析
- 西安高新科技職業(yè)學(xué)院《外國(guó)史學(xué)史》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇省蘇州市東山中學(xué)2025年初三5月月考英語試題理試題含答案
- 肝硬化常見并發(fā)癥的護(hù)理
- 2025年北京市通州區(qū)九年級(jí)初三一模道德與法治試卷(含答案)
- 惠州一中、珠海一中等六校聯(lián)考2024-2025學(xué)年高三考前熱身物理試卷含解析
- 所得稅會(huì)計(jì)試題及答案
- 2025年保安員職業(yè)技能考試筆試試題(700題)附答案
- 《知不足而后進(jìn) 望山遠(yuǎn)而力行》期中家長(zhǎng)會(huì)課件
- 專題09 鄉(xiāng)村和城鎮(zhèn)-五年(2019-2023)高考地理真題分項(xiàng)匯編(解析版)
- 2025年第三屆天揚(yáng)杯建筑業(yè)財(cái)稅知識(shí)競(jìng)賽題庫附答案(201-300題)
- 2025年納米鎳粉市場(chǎng)規(guī)模分析
- T-NKFA 015-2024 中小學(xué)午休課桌椅
- 2024年山東淄博中考滿分作文《從“閱”到“悅”》5
評(píng)論
0/150
提交評(píng)論