重慶市青木關(guān)中學(xué)2025年普通高中高三第二次教學(xué)質(zhì)量檢測(cè)試題數(shù)學(xué)試題_第1頁(yè)
重慶市青木關(guān)中學(xué)2025年普通高中高三第二次教學(xué)質(zhì)量檢測(cè)試題數(shù)學(xué)試題_第2頁(yè)
重慶市青木關(guān)中學(xué)2025年普通高中高三第二次教學(xué)質(zhì)量檢測(cè)試題數(shù)學(xué)試題_第3頁(yè)
重慶市青木關(guān)中學(xué)2025年普通高中高三第二次教學(xué)質(zhì)量檢測(cè)試題數(shù)學(xué)試題_第4頁(yè)
重慶市青木關(guān)中學(xué)2025年普通高中高三第二次教學(xué)質(zhì)量檢測(cè)試題數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶市青木關(guān)中學(xué)2025年普通高中高三第二次教學(xué)質(zhì)量檢測(cè)試題數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在R上的函數(shù)(m為實(shí)數(shù))為偶函數(shù),記,,則a,b,c的大小關(guān)系為()A. B. C. D.2.已知函數(shù),若關(guān)于的方程有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.3.已知P是雙曲線漸近線上一點(diǎn),,是雙曲線的左、右焦點(diǎn),,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.4.記為數(shù)列的前項(xiàng)和數(shù)列對(duì)任意的滿足.若,則當(dāng)取最小值時(shí),等于()A.6 B.7 C.8 D.95.在正項(xiàng)等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.86.一個(gè)空間幾何體的正視圖是長(zhǎng)為4,寬為的長(zhǎng)方形,側(cè)視圖是邊長(zhǎng)為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.7.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應(yīng)填寫(xiě)()A. B. C. D.8.()A. B. C. D.9.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.10.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號(hào)連接)為()A. B.C. D.11.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.412.已知x,y滿足不等式組,則點(diǎn)所在區(qū)域的面積是()A.1 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,曲線上任意一點(diǎn)到直線的距離的最小值為_(kāi)_______.14.的展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)_________.15.直線是曲線的一條切線為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)__________.16.設(shè)是定義在上的函數(shù),且,對(duì)任意,若經(jīng)過(guò)點(diǎn)的一次函數(shù)與軸的交點(diǎn)為,且互不相等,則稱為關(guān)于函數(shù)的平均數(shù),記為.當(dāng)_________時(shí),為的幾何平均數(shù).(只需寫(xiě)出一個(gè)符合要求的函數(shù)即可)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,.(1)當(dāng)時(shí),證明:;(2)設(shè)直線是函數(shù)在點(diǎn)處的切線,若直線也與相切,求正整數(shù)的值.18.(12分)已知函數(shù).(1)求不等式的解集;(2)若存在實(shí)數(shù),使得不等式成立,求實(shí)數(shù)的取值范圍.19.(12分)橢圓:的離心率為,點(diǎn)為橢圓上的一點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若斜率為的直線過(guò)點(diǎn),且與橢圓交于兩點(diǎn),為橢圓的下頂點(diǎn),求證:對(duì)于任意的實(shí)數(shù),直線的斜率之積為定值.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫(xiě)出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值以及此時(shí)的直角坐標(biāo).21.(12分)已知矩陣不存在逆矩陣,且非零特低值對(duì)應(yīng)的一個(gè)特征向量,求的值.22.(10分)已知等差數(shù)列的前n項(xiàng)和為,等比數(shù)列的前n項(xiàng)和為,且,,.(1)求數(shù)列與的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)f(x)為偶函數(shù)便可求出m=0,從而f(x)=﹣1,根據(jù)此函數(shù)的奇偶性與單調(diào)性即可作出判斷.【詳解】解:∵f(x)為偶函數(shù);∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調(diào)遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調(diào)性,對(duì)于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調(diào)性去比較函數(shù)值大小.2、C【解析】

求導(dǎo),先求出在單增,在單減,且知設(shè),則方程有4個(gè)不同的實(shí)數(shù)根等價(jià)于方程在上有兩個(gè)不同的實(shí)數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當(dāng)時(shí),,當(dāng),,且,故方程在上有兩個(gè)不同的實(shí)數(shù)根,故,解得.故選:C.【點(diǎn)睛】本題考查確定函數(shù)零點(diǎn)或方程根個(gè)數(shù).其方法:(1)構(gòu)造法:構(gòu)造函數(shù)(易求,可解),轉(zhuǎn)化為確定的零點(diǎn)個(gè)數(shù)問(wèn)題求解,利用導(dǎo)數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點(diǎn)值的符號(hào)(或變化趨勢(shì))等,畫(huà)出的圖象草圖,數(shù)形結(jié)合求解;(2)定理法:先用零點(diǎn)存在性定理判斷函數(shù)在某區(qū)間上有零點(diǎn),然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點(diǎn)值符號(hào),進(jìn)而判斷函數(shù)在該區(qū)間上零點(diǎn)的個(gè)數(shù).3、B【解析】

求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運(yùn)用直線的斜率公式可得,,,再由等差數(shù)列中項(xiàng)性質(zhì)和離心率公式,計(jì)算可得所求值.【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運(yùn)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4、A【解析】

先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對(duì)任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時(shí),取最小值.故選:A【點(diǎn)睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項(xiàng),采用了賦值法,屬于中檔題.5、B【解析】

根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.6、B【解析】

由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點(diǎn)睛】本題考查三視圖,考查棱柱的體積.解題關(guān)鍵是由三視圖不愿出原幾何體.7、B【解析】

模擬程序框圖運(yùn)行分析即得解.【詳解】;;.所以①處應(yīng)填寫(xiě)“”故選:B【點(diǎn)睛】本題主要考查程序框圖,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.8、D【解析】

利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡(jiǎn),可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.9、A【解析】

由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.10、A【解析】因?yàn)椋裕粗芷跒椋矗驗(yàn)闉槠婧瘮?shù),所以可作一個(gè)周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因?yàn)椋虼耍xA.點(diǎn)睛:函數(shù)對(duì)稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點(diǎn)對(duì)稱);(2)函數(shù)關(guān)于點(diǎn)對(duì)稱,函數(shù)關(guān)于直線對(duì)稱,(3)函數(shù)周期為T,則11、D【解析】

先用公差表示出,結(jié)合等比數(shù)列求出.【詳解】,因?yàn)槌傻缺葦?shù)列,所以,解得.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式.屬于簡(jiǎn)單題,化歸基本量,尋求等量關(guān)系是求解的關(guān)鍵.12、C【解析】

畫(huà)出不等式表示的平面區(qū)域,計(jì)算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點(diǎn)睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運(yùn)算能力,屬于常考題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

解法一:曲線上任取一點(diǎn),利用基本不等式可求出該點(diǎn)到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點(diǎn)坐標(biāo),再計(jì)算出切點(diǎn)到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點(diǎn),該點(diǎn)到直線的距離為,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,因此,曲線上任意一點(diǎn)到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過(guò)曲線上任意一點(diǎn)的切線與直線平行,則,解得,當(dāng)時(shí),到直線的距離;當(dāng)時(shí),到直線的距離.所以曲線上任意一點(diǎn)到直線的距離的最小值為.故答案為:.【點(diǎn)睛】本題考查曲線上一點(diǎn)到直線距離最小值的計(jì)算,可轉(zhuǎn)化為利用切線與直線平行來(lái)找出切點(diǎn),轉(zhuǎn)化為切點(diǎn)到直線的距離,也可以設(shè)曲線上的動(dòng)點(diǎn)坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.14、31【解析】

由二項(xiàng)式定理及其展開(kāi)式得通項(xiàng)公式得:因?yàn)榈恼归_(kāi)式得通項(xiàng)為,則的展開(kāi)式中的常數(shù)項(xiàng)為:,得解.【詳解】解:,則的展開(kāi)式中的常數(shù)項(xiàng)為:.故答案為:31.【點(diǎn)睛】本題考查二項(xiàng)式定理及其展開(kāi)式的通項(xiàng)公式,求某項(xiàng)的導(dǎo)數(shù),考查計(jì)算能力.15、【解析】

根據(jù)切線的斜率為,利用導(dǎo)數(shù)列方程,由此求得切點(diǎn)的坐標(biāo),進(jìn)而求得切線方程,通過(guò)對(duì)比系數(shù)求得的值.【詳解】,則,所以切點(diǎn)為,故切線為,即,故.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解曲線的切線方程有關(guān)問(wèn)題,屬于基礎(chǔ)題.16、【解析】

由定義可知三點(diǎn)共線,即,通過(guò)整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點(diǎn)共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點(diǎn)睛】本題考查了兩點(diǎn)的斜率公式,考查了推理能力,考查了運(yùn)算能力.本題關(guān)鍵是分析出三點(diǎn)共線.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】

(1)令,求導(dǎo),可知單調(diào)遞增,且,,因而在上存在零點(diǎn),在此取得最小值,再證最小值大于零即可.(2)根據(jù)題意得到在點(diǎn)處的切線的方程①,再設(shè)直線與相切于點(diǎn),有,即,再求得在點(diǎn)處的切線直線的方程為②由①②可得,即,根據(jù),轉(zhuǎn)化為,,令,轉(zhuǎn)化為要使得在上存在零點(diǎn),則只需,求解.【詳解】(1)證明:設(shè),則,單調(diào)遞增,且,,因而在上存在零點(diǎn),且在上單調(diào)遞減,在上單調(diào)遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設(shè)直線與相切于點(diǎn),注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數(shù)可知,,所以,,令,則,當(dāng)時(shí),為單調(diào)遞增函數(shù),且,從而在上無(wú)零點(diǎn);當(dāng)時(shí),要使得在上存在零點(diǎn),則只需,,因?yàn)闉閱握{(diào)遞增函數(shù),,所以;因?yàn)闉閱握{(diào)遞增函數(shù),且,因此;因?yàn)闉檎麛?shù),且,所以.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.18、(1);(2).【解析】

(1)將函數(shù)的解析式表示為分段函數(shù),然后分、、三段求解不等式,綜合可得出不等式的解集;(2)求出函數(shù)的最大值,由題意得出,解此不等式即可得出實(shí)數(shù)的取值范圍.【詳解】.(1)當(dāng)時(shí),由,解得,此時(shí);當(dāng)時(shí),由,解得,此時(shí);當(dāng)時(shí),由,解得,此時(shí).綜上所述,不等式的解集;(2)當(dāng)時(shí),函數(shù)單調(diào)遞增,則;當(dāng)時(shí),函數(shù)單調(diào)遞減,則,即;當(dāng)時(shí),函數(shù)單調(diào)遞減,則.綜上所述,函數(shù)的最大值為,由題知,,解得.因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查含絕對(duì)值不等式的求解,同時(shí)也考查了絕對(duì)值不等式中的參數(shù)問(wèn)題,考查分類討論思想的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.19、(1);(2)證明見(jiàn)解析【解析】

(1)運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,解得,,進(jìn)而得到橢圓方程;(2)設(shè)直線,代入橢圓方程,運(yùn)用韋達(dá)定理和直線的斜率公式,以及點(diǎn)在直線上滿足直線方程,化簡(jiǎn)整理,即可得到定值.【詳解】(1)因?yàn)椋裕儆謾E圓過(guò)點(diǎn),所以②由①②,解得所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明設(shè)直線:,聯(lián)立得,設(shè),則易知故所以對(duì)于任意的,直線的斜率之積為定值.【點(diǎn)睛】本題考查橢圓的方程的求法,注意運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,考查直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和直線的斜率公式,化簡(jiǎn)整理,考查運(yùn)算能力,屬于中檔題.20、(1):,:;(2),此時(shí).【解析】試題分析:(1)的普通方程為,的直角坐標(biāo)方程為;(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為到的距離當(dāng)且僅當(dāng)時(shí),取得最小值,最小值為,此時(shí)的直角坐標(biāo)為.試題解析:(1)的普通方程為,的直角坐標(biāo)方程為.(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為,因?yàn)槭侵本€,所以的最小值即為到的距離的最小值,.當(dāng)且僅當(dāng)時(shí),取得最小值,最小值為,此時(shí)的直角坐標(biāo)為.考點(diǎn):坐標(biāo)系與參數(shù)方程.【方法點(diǎn)睛】參數(shù)方程與普通方程的互化:把參數(shù)方程化為普通方程,需要根據(jù)其結(jié)構(gòu)特征,選取適當(dāng)?shù)南麉⒎椒ǎR?jiàn)的消參方法有:代入消參法;加減消參法;平方和(差)消參法;乘法消參法;混合消參法等.把曲線的普通方程化為參數(shù)方程的關(guān)鍵:一是適當(dāng)選取參數(shù);二是確保互化前后方程的等價(jià)性.注意方程中的參數(shù)的變化范圍.21、【解析】

由不存在逆矩陣,可得,再利用特征多項(xiàng)式求出特征值3,0,,利用矩陣乘法運(yùn)算即可.【詳解】因?yàn)椴淮嬖谀婢仃嚕?矩陣的特征多項(xiàng)式為,令

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論