2025屆湖北省宜昌金東方高級(jí)中學(xué)高三第一次教學(xué)質(zhì)量檢測(cè)試題卷數(shù)學(xué)試題_第1頁(yè)
2025屆湖北省宜昌金東方高級(jí)中學(xué)高三第一次教學(xué)質(zhì)量檢測(cè)試題卷數(shù)學(xué)試題_第2頁(yè)
2025屆湖北省宜昌金東方高級(jí)中學(xué)高三第一次教學(xué)質(zhì)量檢測(cè)試題卷數(shù)學(xué)試題_第3頁(yè)
2025屆湖北省宜昌金東方高級(jí)中學(xué)高三第一次教學(xué)質(zhì)量檢測(cè)試題卷數(shù)學(xué)試題_第4頁(yè)
2025屆湖北省宜昌金東方高級(jí)中學(xué)高三第一次教學(xué)質(zhì)量檢測(cè)試題卷數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆湖北省宜昌金東方高級(jí)中學(xué)高三第一次教學(xué)質(zhì)量檢測(cè)試題卷數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,例如:,,,那么在不超過(guò)18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率為()A. B. C. D.2.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.3.如圖是正方體截去一個(gè)四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.4.設(shè)a,b,c為正數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不修要條件5.若均為任意實(shí)數(shù),且,則的最小值為()A. B. C. D.6.已知復(fù)數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在正方體中,點(diǎn),,分別為棱,,的中點(diǎn),給出下列命題:①;②;③平面;④和成角為.正確命題的個(gè)數(shù)是()A.0 B.1 C.2 D.38.過(guò)雙曲線的右焦點(diǎn)F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過(guò)雙曲線C的左頂點(diǎn),則雙曲線C的離心率為()A. B. C.2 D.9.已知平行于軸的直線分別交曲線于兩點(diǎn),則的最小值為()A. B. C. D.10.已知函數(shù),若,且,則的取值范圍為()A. B. C. D.11.某校8位學(xué)生的本次月考成績(jī)恰好都比上一次的月考成績(jī)高出50分,則以該8位學(xué)生這兩次的月考成績(jī)各自組成樣本,則這兩個(gè)樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)12.已知集合,,則()A. B.C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對(duì)邊分別為,,,若,且,則面積的最大值為_(kāi)_______.14.在平面直角坐標(biāo)系中,已知圓及點(diǎn),設(shè)點(diǎn)是圓上的動(dòng)點(diǎn),在中,若的角平分線與相交于點(diǎn),則的取值范圍是_______.15.若實(shí)數(shù)x,y滿足約束條件,則的最大值為_(kāi)_______.16.在平面直角坐標(biāo)系中,圓.已知過(guò)原點(diǎn)且相互垂直的兩條直線和,其中與圓相交于,兩點(diǎn),與圓相切于點(diǎn).若,則直線的斜率為_(kāi)____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時(shí),證明:.18.(12分)已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.19.(12分)已知橢圓的左頂點(diǎn)為,左、右焦點(diǎn)分別為,離心率為,是橢圓上的一個(gè)動(dòng)點(diǎn)(不與左、右頂點(diǎn)重合),且的周長(zhǎng)為6,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,直線交于點(diǎn).(1)求橢圓方程;(2)若直線與橢圓交于另一點(diǎn),且,求點(diǎn)的坐標(biāo).20.(12分)選修4-5:不等式選講設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最小值為,正實(shí)數(shù)、滿足,求證:.22.(10分)數(shù)列滿足,是與的等差中項(xiàng).(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

先求出從不超過(guò)18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過(guò)18的素?cái)?shù)有2,3,5,7,11,13,17共7個(gè),從中隨機(jī)選取兩個(gè)不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點(diǎn)睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題不可以列舉出所有事件但可以用分步計(jì)數(shù)得到,屬于基礎(chǔ)題.2、B【解析】

由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計(jì)算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【點(diǎn)睛】本題考查等差數(shù)列的下標(biāo)和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.3、C【解析】

根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長(zhǎng)為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點(diǎn)睛】本題考查利用三視圖計(jì)算幾何體的體積,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】

根據(jù)不等式的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:,,為正數(shù),當(dāng),,時(shí),滿足,但不成立,即充分性不成立,若,則,即,即,即,成立,即必要性成立,則“”是“”的必要不充分條件,故選:.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合不等式的性質(zhì)是解決本題的關(guān)鍵.5、D【解析】

該題可以看做是圓上的動(dòng)點(diǎn)到曲線上的動(dòng)點(diǎn)的距離的平方的最小值問(wèn)題,可以轉(zhuǎn)化為圓心到曲線上的動(dòng)點(diǎn)的距離減去半徑的平方的最值問(wèn)題,結(jié)合圖形,可以斷定那個(gè)點(diǎn)應(yīng)該滿足與圓心的連線與曲線在該點(diǎn)的切線垂直的問(wèn)題來(lái)解決,從而求得切點(diǎn)坐標(biāo),即滿足條件的點(diǎn),代入求得結(jié)果.【詳解】由題意可得,其結(jié)果應(yīng)為曲線上的點(diǎn)與以為圓心,以為半徑的圓上的點(diǎn)的距離的平方的最小值,可以求曲線上的點(diǎn)與圓心的距離的最小值,在曲線上取一點(diǎn),曲線有在點(diǎn)M處的切線的斜率為,從而有,即,整理得,解得,所以點(diǎn)滿足條件,其到圓心的距離為,故其結(jié)果為,故選D.【點(diǎn)睛】本題考查函數(shù)在一點(diǎn)處切線斜率的應(yīng)用,考查圓的程,兩條直線垂直的斜率關(guān)系,屬中檔題.6、C【解析】分析:根據(jù)復(fù)數(shù)的運(yùn)算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對(duì)應(yīng)的點(diǎn),得到答案.詳解:由題意,復(fù)數(shù)z=2i1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C.點(diǎn)睛:本題主要考查了復(fù)數(shù)的四則運(yùn)算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運(yùn)算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.7、C【解析】

建立空間直角坐標(biāo)系,利用向量的方法對(duì)四個(gè)命題逐一分析,由此得出正確命題的個(gè)數(shù).【詳解】設(shè)正方體邊長(zhǎng)為,建立空間直角坐標(biāo)系如下圖所示,,.①,,所以,故①正確.②,,不存在實(shí)數(shù)使,故不成立,故②錯(cuò)誤.③,,,故平面不成立,故③錯(cuò)誤.④,,設(shè)和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個(gè).故選:C【點(diǎn)睛】本小題主要考查空間線線、線面位置關(guān)系的向量判斷方法,考查運(yùn)算求解能力,屬于中檔題.8、C【解析】

由得F是弦AB的中點(diǎn).進(jìn)而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因?yàn)椋訤是弦AB的中點(diǎn).且AB垂直于x軸.因?yàn)橐訟B為直徑的圓經(jīng)過(guò)雙曲線C的左頂點(diǎn),所以,即,則,故.故選:C【點(diǎn)睛】本題是對(duì)雙曲線的漸近線以及離心率的綜合考查,是考查基本知識(shí),屬于基礎(chǔ)題.9、A【解析】

設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡(jiǎn)整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.10、A【解析】分析:作出函數(shù)的圖象,利用消元法轉(zhuǎn)化為關(guān)于的函數(shù),構(gòu)造函數(shù)求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,即可得到結(jié)論.詳解:作出函數(shù)的圖象,如圖所示,若,且,則當(dāng)時(shí),得,即,則滿足,則,即,則,設(shè),則,當(dāng),解得,當(dāng),解得,當(dāng)時(shí),函數(shù)取得最小值,當(dāng)時(shí),;當(dāng)時(shí),,所以,即的取值范圍是,故選A.點(diǎn)睛:本題主要考查了分段函數(shù)的應(yīng)用,構(gòu)造新函數(shù),求解新函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性和最值是解答本題的關(guān)鍵,著重考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想方法,以及分析問(wèn)題和解答問(wèn)題的能力,試題有一定的難度,屬于中檔試題.11、A【解析】

通過(guò)方差公式分析可知方差沒(méi)有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績(jī)相比,成績(jī)和平均數(shù)都增加了50,所以沒(méi)有改變,根據(jù)方差公式可知方差不變.故選:A【點(diǎn)睛】本題主要考查樣本的數(shù)字特征,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.12、D【解析】

首先求出集合,再根據(jù)補(bǔ)集的定義計(jì)算可得;【詳解】解:∵,解得∴,∴.故選:D【點(diǎn)睛】本題考查補(bǔ)集的概念及運(yùn)算,一元二次不等式的解法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關(guān)系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴,∴面積的最大值為.故答案為:【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應(yīng)用,以及基本不等式的應(yīng)用,屬于中檔題.14、【解析】

由角平分線成比例定理推理可得,進(jìn)而設(shè)點(diǎn)表示向量構(gòu)建方程組表示點(diǎn)P坐標(biāo),代入圓C方程即可表示動(dòng)點(diǎn)Q的軌跡方程,再由將所求視為該圓上的點(diǎn)與原點(diǎn)間的距離,所以其最值為圓心到原點(diǎn)的距離加減半徑.【詳解】由題可構(gòu)建如圖所示的圖形,因?yàn)锳Q是的角平分線,由角平分線成比例定理可知,所以.設(shè)點(diǎn),點(diǎn),即,則,所以.又因?yàn)辄c(diǎn)是圓上的動(dòng)點(diǎn),則,故點(diǎn)Q的運(yùn)功軌跡是以為圓心為半徑的圓,又即為該圓上的點(diǎn)與原點(diǎn)間的距離,因?yàn)椋怨蚀鸢笧椋骸军c(diǎn)睛】本題考查與圓有關(guān)的距離的最值問(wèn)題,常常轉(zhuǎn)化到圓心的距離加減半徑,還考查了求動(dòng)點(diǎn)的軌跡方程,屬于中檔題.15、3【解析】

作出可行域,可得當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),.故答案為:3.【點(diǎn)睛】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.16、【解析】

設(shè):,:,利用點(diǎn)到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設(shè)直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據(jù)垂徑定理的應(yīng)用,可列式得到,解得.故答案為:.【點(diǎn)睛】本題主要考查點(diǎn)到直線的距離公式的運(yùn)用,并結(jié)合圓的方程,垂徑定理的基本知識(shí),屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】

(1)在上有解,,設(shè),求導(dǎo)根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以是的最大值點(diǎn),所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以是的最小值點(diǎn),,則,故.【點(diǎn)睛】本題考查了函數(shù)的切線問(wèn)題,證明不等式,意在考查學(xué)生的綜合應(yīng)用能力和轉(zhuǎn)化能力.18、(1)證明見(jiàn)解析;(2)【解析】

(1)連接交于點(diǎn),連接,通過(guò)證,并說(shuō)明平面,來(lái)證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,分別表示出對(duì)應(yīng)的點(diǎn)坐標(biāo),設(shè)平面的一個(gè)法向量為,結(jié)合直線對(duì)應(yīng)的和法向量,利用向量夾角的余弦公式進(jìn)行求解即可【詳解】證明:如圖,連接交于點(diǎn),連接,點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),點(diǎn)為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的一個(gè)法向量為,由,取,得.設(shè)直線與平面所成角為,則.直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的判定定理的使用,利用建系法來(lái)求解線面夾角問(wèn)題,整體難度不大,本題中的線面夾角的正弦值公式使用廣泛,需要識(shí)記19、(1);(2)或【解析】

(1)根據(jù)的周長(zhǎng)為,結(jié)合離心率,求出,即可求出方程;(2)設(shè),則,求出直線方程,若斜率不存在,求出坐標(biāo),直接驗(yàn)證是否滿足題意,若斜率存在,求出其方程,與直線方程聯(lián)立,求出點(diǎn)坐標(biāo),根據(jù)和三點(diǎn)共線,將點(diǎn)坐標(biāo)用表示,坐標(biāo)代入橢圓方程,即可求解.【詳解】(1)因?yàn)闄E圓的離心率為,的周長(zhǎng)為6,設(shè)橢圓的焦距為,則解得,,,所以橢圓方程為.(2)設(shè),則,且,所以的方程為①.若,則的方程為②,由對(duì)稱性不妨令點(diǎn)在軸上方,則,,聯(lián)立①,②解得即.的方程為,代入橢圓方程得,整理得,或,.,不符合條件.若,則的方程為,即③.聯(lián)立①,③可解得所以.因?yàn)椋O(shè)所以,即.又因?yàn)槲挥谳S異側(cè),所以.因?yàn)槿c(diǎn)共線,即應(yīng)與共線,所以,即,所以,又,所以,解得,所以,所以點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程以及應(yīng)用、直線與橢圓的位置關(guān)系,考查分類討論思想和計(jì)算求解能力,屬于較難題.20、(1);(2)【解析】

(1)當(dāng)時(shí),將原不等式化簡(jiǎn)后兩邊平方,由此解出不等式

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論