




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北省大名一中高三下學期(4月模擬)數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.2.函數的部分圖象大致為()A. B.C. D.3.已知集合,集合,若,則()A. B. C. D.4.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.5.已知函數,若,則a的取值范圍為()A. B. C. D.6.設為等差數列的前項和,若,則A. B.C. D.7.若將函數的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數的圖象,則下列說法正確的是()A.函數在上單調遞增 B.函數的周期是C.函數的圖象關于點對稱 D.函數在上最大值是18.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.10.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.11.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.12.定義域為R的偶函數滿足任意,有,且當時,.若函數至少有三個零點,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.實數滿足,則的最大值為_____.14.數列的前項和為,數列的前項和為,滿足,,且.若任意,成立,則實數的取值范圍為__________.15.已知為等差數列,為其前n項和,若,,則_______.16.已知向量,且,則實數的值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的參數方程是(為參數,常數),曲線的極坐標方程是.(1)寫出的普通方程及的直角坐標方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點,求直線的極坐標方程.18.(12分)已知數列是公比為正數的等比數列,其前項和為,滿足,且成等差數列.(1)求的通項公式;(2)若數列滿足,求的值.19.(12分)管道清潔棒是通過在管道內釋放清潔劑來清潔管道內壁的工具,現欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內恰好處于位置(圖中給出的數據是圓管內壁直徑大小,).(1)請用角表示清潔棒的長;(2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.20.(12分)[2018·石家莊一檢]已知函數.(1)若,求函數的圖像在點處的切線方程;(2)若函數有兩個極值點,,且,求證:.21.(12分)的內角的對邊分別為,已知.(1)求的大小;(2)若,求面積的最大值.22.(10分)為了加強環保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內的人數;(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數,求的分布列和數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據題意畫出幾何關系,由四邊形的內切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據題意,畫出幾何關系如下圖所示:設四邊形的內切圓半徑為,雙曲線半焦距為,則所以,四邊形的內切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.2.B【解析】
圖像分析采用排除法,利用奇偶性判斷函數為奇函數,再利用特值確定函數的正負情況。【詳解】,故奇函數,四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B。【點睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。3.A【解析】
根據或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎題.4.D【解析】
根據線面垂直的性質,可知;結合即可證明,進而求得.由線段關系及平面向量數量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質應用,平面向量數量積的運算,屬于基礎題.5.C【解析】
求出函數定義域,在定義域內確定函數的單調性,利用單調性解不等式.【詳解】由得,在時,是增函數,是增函數,是增函數,∴是增函數,∴由得,解得.故選:C.【點睛】本題考查函數的單調性,考查解函數不等式,解題關鍵是確定函數的單調性,解題時可先確定函數定義域,在定義域內求解.6.C【解析】
根據等差數列的性質可得,即,所以,故選C.7.A【解析】
根據三角函數伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調遞增,正確;關于點對稱,錯誤;根據正弦型函數最小正周期的求解可知錯誤;根據正弦型函數在區間內值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標縮短到原來的得:當時,在上單調遞增在上單調遞增,正確;的最小正周期為:不是的周期,錯誤;當時,,關于點對稱,錯誤;當時,此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數的性質,涉及到三角函數的伸縮變換、正弦型函數周期性、單調性和對稱性、正弦型函數在一段區間內的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數的圖象來判斷出所求函數的性質.8.B【解析】
三視圖對應的幾何體為如圖所示的幾何體,利用割補法可求其體積.【詳解】根據三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點睛】本題考查三視圖以及不規則幾何體的體積,復原幾何體時注意三視圖中的點線關系與幾何體中的點、線、面的對應關系,另外,不規則幾何體的體積可用割補法來求其體積,本題屬于基礎題.9.B【解析】
先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10.D【解析】
求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.11.D【解析】
先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.12.B【解析】
由題意可得的周期為,當時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數形結合,根據,求得的取值范圍.【詳解】是定義域為R的偶函數,滿足任意,,令,又,為周期為的偶函數,當時,,當,當,作出圖像,如下圖所示:函數至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數周期性及其應用,解題過程中用到了數形結合方法,這也是高考常考的熱點問題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】
畫出可行域,解出可行域的頂點坐標,代入目標函數求出相應的數值,比較大小得到目標函數最值.【詳解】解:作出可行域,如圖所示,則當直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規劃的線性目標函數的最優解問題.線性目標函數的最優解一般在平面區域的頂點或邊界處取得,所以對于一般的線性規劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數求出相應的數值,從而確定目標函數的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.14.【解析】
當時,,可得到,再用累乘法求出,再求出,根據定義求出,再借助單調性求解.【詳解】解:當時,,則,,當時,,,,,,(當且僅當時等號成立),,故答案為:.【點睛】本題主要考查已知求,累乘法,主要考查計算能力,屬于中檔題.15.1【解析】試題分析:因為是等差數列,所以,即,又,所以,所以.故答案為1.【考點】等差數列的基本性質【名師點睛】在等差數列五個基本量,,,,中,已知其中三個量,可以根據已知條件,結合等差數列的通項公式、前項和公式列出關于基本量的方程(組)來求余下的兩個量,計算時須注意整體代換思想及方程思想的應用.16.【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點睛:由向量的數乘和坐標加減法運算求得,然后利用向量共線的坐標表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),,表示以為圓心為半徑的圓;為拋物線;(2)【解析】
(1)消去參數的直角坐標方程,利用,即得的直角坐標方程;(2)由直線與拋物線相切,求導可得切線斜率,再由直線與圓相切,故切線與圓心與切點連線垂直,可求解得到切點坐標,即得解.【詳解】(1)消去參數的直角坐標方程為:.的極坐標方程.∵,.當時表示以為圓心為半徑的圓;為拋物線.(2)設切點為,由于,則切線斜率為,由于直線與圓相切,故切線與圓心與切點連線垂直,故有,直線的直角坐標方程為,所以的極坐標方程為.【點睛】本題考查了極坐標,參數方程綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.18.(1)(2)【解析】
(1)由公比表示出,由成等差數列可求得,從而數列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數列的前項和公式可求解.【詳解】(1)∵是等比數列,且成等差數列∴,即∴,解得:或∵,∴∵∴(2)∵∴【點睛】本題考查等比數列的通項公式,考查并項求和法及等差數列的項和公式.本題求數列通項公式所用方法為基本量法,求和是用并項求和法.數列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.19.(1);(2).【解析】
(1)過作的垂線,垂足為,易得,進一步可得;(2)利用導數求得最大值即可.【詳解】(1)如圖,過作的垂線,垂足為,在直角中,,,所以,同理,.(2)設,則,令,則,即.設,且,則當時,,所以單調遞減;當時,,所以單調遞增,所以當時,取得極小值,所以.因為,所以,又,所以,又,所以,所以,所以,所以能通過此鋼管的鐵棒最大長度為.【點睛】本題考查導數在實際問題中的應用,考查學生的數學運算求解能力,是一道中檔題.20.(1)(2)見解析【解析】試題分析:(1)分別求得和,由點斜式可得切線方程;(2)由已知條件可得有兩個相異實根,,進而再求導可得,結合函數的單調性可得,從而得證.試題解析:(1)由已知條件,,當時,,,當時,,所以所求切線方程為(2)由已知條件可得有兩個相異實根,,令,則,1)若,則,單調遞增,不可能有兩根;2)若,令得,可知在上單調遞增,在上單調遞減,令解得,由有,由有,從而時函數有兩個極值點,當變化時,,的變化情況如下表單調遞減單調遞增單調遞減因為,所以,在區間上單調遞增,.另解:由已知可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025端午節主題活動總結參考(18篇)
- 各崗位競聘演講稿精彩開頭范文(5篇)
- 空調器余熱利用系統設計考核試卷
- 防城港市文旅集團有限公司招聘筆試真題2024
- 2024年大連西太平洋石油化工有限公司高校畢業生招聘考試真題
- 羽絨加工中的微生物控制考核試卷
- 2025年辭職報告(20篇)
- 市場部業務員2025年工作總結(5篇)
- 島上的書店讀書心得感悟(10篇)
- 教師節的活動總結范文(16篇)
- DB65-T 4765-2024 農牧區標準化羊場建設規范
- 管理評審報告(完整詳細版)
- 廚房燃料合同協議書
- 攝影攝像知識競賽考試題庫500題(含答案)
- YY-T 0950-2015 氣壓彈道式體外壓力波治療設備
- GB/T 44218-2024微型揚聲器測量方法
- (正式版)JB∕T 14666-2024 鋼質汽車轉向節臂鍛件 工藝規范
- AQ/T 9009-2015 生產安全事故應急演練評估規范(正式版)
- 《無人機測繪技能訓練模塊》課件-模塊7:無人機航測影像獲取
- 人工髖關節置換隨訪資料庫模板
- (完整版)12123交管學法減分考試題及答案
評論
0/150
提交評論