廣東省普寧市勤建學校2025屆高三高考模擬考數學試題_第1頁
廣東省普寧市勤建學校2025屆高三高考模擬考數學試題_第2頁
廣東省普寧市勤建學校2025屆高三高考模擬考數學試題_第3頁
廣東省普寧市勤建學校2025屆高三高考模擬考數學試題_第4頁
廣東省普寧市勤建學校2025屆高三高考模擬考數學試題_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省普寧市勤建學校2025屆高三高考模擬考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設集合,,則()A. B.C. D.2.若的展開式中的系數為150,則()A.20 B.15 C.10 D.253.已知,,則等于().A. B. C. D.4.設為等差數列的前項和,若,,則的最小值為()A. B. C. D.5.若是定義域為的奇函數,且,則A.的值域為 B.為周期函數,且6為其一個周期C.的圖像關于對稱 D.函數的零點有無窮多個6.若函數的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.7.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.若集合,,則A. B. C. D.9.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數的取值范圍為A. B. C. D.10.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.11.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.12.已知數列滿足,且成等比數列.若的前n項和為,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設實數x,y滿足,則點表示的區域面積為______.14.已知雙曲線的左、右焦點分別為為雙曲線上任一點,且的最小值為,則該雙曲線的離心率是__________.15.已知函數,對于任意都有,則的值為______________.16.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實數a的值;(2)證明:f(x).18.(12分)設函數.(1)若函數在是單調遞減的函數,求實數的取值范圍;(2)若,證明:.19.(12分)已知直線與橢圓恰有一個公共點,與圓相交于兩點.(I)求與的關系式;(II)點與點關于坐標原點對稱.若當時,的面積取到最大值,求橢圓的離心率.20.(12分)運輸一批海鮮,可在汽車、火車、飛機三種運輸工具中選擇,它們的速度分別為60千米/小時、120千米/小時、600千米/小時,每千米的運費分別為20元、10元、50元.這批海鮮在運輸過程中每小時的損耗為m元(),運輸的路程為S(千米).設用汽車、火車、飛機三種運輸工具運輸時各自的總費用(包括運費和損耗費)分別為(元)、(元)、(元).(1)請分別寫出、、的表達式;(2)試確定使用哪種運輸工具總費用最省.21.(12分)在平面直角坐標系中,已知直線l的參數方程為(t為參數),在以坐標原點O為極點,x軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線C的極坐標方程是.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于兩點A,B,求線段的長.22.(10分)等比數列中,.(Ⅰ)求的通項公式;(Ⅱ)記為的前項和.若,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

利用一元二次不等式的解法和集合的交運算求解即可.【詳解】由題意知,集合,,由集合的交運算可得,.故選:D【點睛】本題考查一元二次不等式的解法和集合的交運算;考查運算求解能力;屬于基礎題.2.C【解析】

通過二項式展開式的通項分析得到,即得解.【詳解】由已知得,故當時,,于是有,則.故選:C【點睛】本題主要考查二項式展開式的通項和系數問題,意在考查學生對這些知識的理解掌握水平.3.B【解析】

由已知條件利用誘導公式得,再利用三角函數的平方關系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結合解得,所以,故選B.【點睛】本題考查三角函數的誘導公式、同角三角函數的平方關系以及三角函數的符號與位置關系,屬于基礎題.4.C【解析】

根據已知條件求得等差數列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數列通項公式和前項和公式的基本量計算,考查等差數列前項和最值的求法,屬于基礎題.5.D【解析】

運用函數的奇偶性定義,周期性定義,根據表達式判斷即可.【詳解】是定義域為的奇函數,則,,又,,即是以4為周期的函數,,所以函數的零點有無窮多個;因為,,令,則,即,所以的圖象關于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數的性質,主要是抽象函數的性質,運用數學式子判斷得出結論是關鍵.6.B【解析】

把已知點坐標代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數為,四個選項都不合題意,若,則函數為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復合函數的對稱軸,掌握正弦函數的性質是解題關鍵.7.B【解析】

根據誘導公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導公式的運用,屬于基礎題.8.C【解析】

解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.9.C【解析】

因為,,所以根據正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數的取值范圍為,故選C.10.A【解析】

設,則MF的中點坐標為,代入雙曲線的方程可得的關系,再轉化成關于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設,∴MF的中點坐標為.代入方程可得,∴,∴,∴(負值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構造的齊次方程.11.D【解析】

根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F1(0,),F2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.12.D【解析】

利用等比中項性質可得等差數列的首項,進而求得,再利用二次函數的性質,可得當或時,取到最小值.【詳解】根據題意,可知為等差數列,公差,由成等比數列,可得,∴,解得.∴.根據單調性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數列通項公式、等比中項性質、等差數列前項和的最值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先畫出滿足條件的平面區域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數x,y滿足表示的平面區域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.14.【解析】

根據雙曲線方程,設及,將代入雙曲線方程并化簡可得,由題意的最小值為,結合平面向量數量積的坐標運算化簡,即可求得的值,進而求得離心率即可.【詳解】設點,,則,即,∵,,,當時,等號成立,∴,∴,∴.故答案為:.【點睛】本題考查了雙曲線與向量的綜合應用,由平面向量數量積的最值求離心率,屬于中檔題.15.【解析】

由條件得到函數的對稱性,從而得到結果【詳解】∵f=f,∴x=是函數f(x)=2sin(ωx+φ)的一條對稱軸.∴f=±2.【點睛】本題考查了正弦型三角函數的對稱性,注意對稱軸必過最高點或最低點,屬于基礎題.16.等腰三角形【解析】∵∴根據正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)a=1;(2)見解析【解析】

(1)由題意可得|x﹣a|≥4x,分類討論去掉絕對值,分別求得x的范圍即可求出a的值.(2)由條件利用絕對值三角不等式,基本不等式證得f(x)≥2..【詳解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),當x≥a時,x﹣a≥4x,解得x,這與x≥a>0矛盾,故不成立,當x<a時,a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)證明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a22,當且僅當a時取等號,故f(x).【點睛】本題主要考查絕對值三角不等式,基本不等式,絕對值不等式的解法,體現了轉化、分類討論的數學思想,屬于基礎題.18.(1)(2)證明見解析【解析】

(1)求出導函數,由在上恒成立,采用分離參數法求解;(2)觀察函數,不等式湊配后知,利用時可證結論.【詳解】(1)因為在上單調遞減,所以,即在上恒成立因為在上是單調遞減的,所以,所以(2)因為,所以由(1)知,當時,在上單調遞減所以即所以.【點睛】本題考查用導數研究函數的單調性,考查用導數證明不等式.解題關鍵是把不等式與函數的結論聯系起來,利用函數的特例得出不等式的證明.19.(Ⅰ)(II)【解析】

(I)聯立直線與橢圓的方程,根據判別式等于0,即可求出結果;(Ⅱ)因點與點關于坐標原點對稱,可得的面積是的面積的兩倍,再由當時,的面積取到最大值,可得,進而可得原點到直線的距離,再由點到直線的距離公式,以及(I)的結果,即可求解.【詳解】(I)由,得,則化簡整理,得;(Ⅱ)因點與點關于坐標原點對稱,故的面積是的面積的兩倍.所以當時,的面積取到最大值,此時,從而原點到直線的距離,又,故.再由(I),得,則.又,故,即,從而,即.【點睛】本題主要考查直線與橢圓的位置關系,以及橢圓的簡單性質,通常需要聯立直線與橢圓方程,結合韋達定理、判別式等求解,屬于中檔試題.20.(1),,.(2)當時,此時選擇火車運輸費最省;當時,此時選擇飛機運輸費用最省;當時,此時選擇火車或飛機運輸費用最省.【解析】

(1)將運費和損耗費相加得出總費用的表達式.(2)作差比較、的大小關系得出結論.【詳解】(1),,.(2),故,恒成立,故只需比較與的大小關系即可,令,故當,即時,,即,此時選擇火車運輸費最省,當,即時,,即,此時選擇飛機運輸費用最省.當,即時,,,此時選擇火車或飛機運輸費用最省.【點睛】本題考查了常見函數的模型,考查了分類討論的思想,屬于基礎題.21.(1)l:,C:;(2)【解析】

(1)直接利用轉換關系,把參數方程直角坐標方程和極坐標方程之間進行轉換;

(2)由(1)可得曲線是圓,求出圓心坐標及半徑,再求得圓心到直線的距離,即可求得的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論