




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
天津四中2025年高考考前沖刺必刷卷(二)數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)有且只有4個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.2.已知集合,,則等于()A. B. C. D.3.已知我市某居民小區(qū)戶主人數(shù)和戶主對戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進行調(diào)查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,184.中,點在邊上,平分,若,,,,則()A. B. C. D.5.已知函數(shù)的圖象與直線的相鄰交點間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.6.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當(dāng)取得最大值時,雙曲線的離心率為()A. B. C. D.7.函數(shù)的圖象與函數(shù)的圖象的交點橫坐標(biāo)的和為()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.79.在直角梯形中,,,,,點為上一點,且,當(dāng)?shù)闹底畲髸r,()A. B.2 C. D.10.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.11.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內(nèi)隨機取N個點,經(jīng)統(tǒng)計落入五環(huán)內(nèi)部及其邊界上的點數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.12.下圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù),其中且,則______________.14.在棱長為的正方體中,是面對角線上兩個不同的動點.以下四個命題:①存在兩點,使;②存在兩點,使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個面上的正投影的面積的和為定值.其中為真命題的是____.15.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面16.下圖是一個算法流程圖,則輸出的的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.(1)若當(dāng)時,,求此時的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.18.(12分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費時費力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人數(shù)的頻數(shù)分布表:時間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).列聯(lián)表如下流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天辦理社保手續(xù)所需時間超過4天60總計21090300(2)為了改進工作作風(fēng),提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87919.(12分)已知數(shù)列滿足:對任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項公式;(3)設(shè),,求證:若成等差數(shù)列,則也成等差數(shù)列.20.(12分)某公司為了鼓勵運動提高所有用戶的身體素質(zhì),特推出一款運動計步數(shù)的軟件,所有用戶都可以通過每天累計的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計了2019年1月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運動達人”,步數(shù)在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯(lián)表:運動達人非運動達人總計男3560女26總計100(1)(i)將列聯(lián)表補充完整;(ii)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”?(2)將頻率視作概率,從該公司的所有人“運動達人”中任意抽取3個用戶,求抽取的用戶中女用戶人數(shù)的分布列及期望.附:21.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.22.(10分)已知函數(shù).(1)若曲線的切線方程為,求實數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由是偶函數(shù),則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數(shù)所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數(shù)性質(zhì)的應(yīng)用以及根據(jù)零點個數(shù)確定參數(shù)的取值范圍,基礎(chǔ)題.2.A【解析】
進行交集的運算即可.【詳解】,1,2,,,,1,.故選:.【點睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運算,考查了計算能力,屬于基礎(chǔ)題.3.A【解析】
利用統(tǒng)計圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數(shù)為:故選A.【點睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意統(tǒng)計圖的性質(zhì)的合理運用.4.B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎(chǔ)題.5.A【解析】
由題知,利用求出,再根據(jù)題給定義,化簡求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關(guān)鍵是對新定義的理解.6.D【解析】
先求出四個頂點、四個焦點的坐標(biāo),四個頂點構(gòu)成一個菱形,求出菱形的面積,四個焦點構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標(biāo)為,四個焦點的坐標(biāo)為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當(dāng)取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.7.B【解析】
根據(jù)兩個函數(shù)相等,求出所有交點的橫坐標(biāo),然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點的橫坐標(biāo)的和,故選B.【點睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運算的核心素養(yǎng).8.C【解析】
根據(jù)程序框圖程序運算即可得.【詳解】依程序運算可得:,故選:C【點睛】本題主要考查了程序框圖的計算,解題的關(guān)鍵是理解程序框圖運行的過程.9.B【解析】
由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設(shè),則,即,又因為所以,所以,當(dāng)時,等號成立.所以.故選:B.【點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.10.B【解析】
根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應(yīng)用及組合體的表面積求法,難度較易.11.B【解析】
根據(jù)比例關(guān)系求得會旗中五環(huán)所占面積,再計算比值.【詳解】設(shè)會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎(chǔ)題.12.D【解析】
根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查二倍角公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先化簡函數(shù)的解析式,在求出,從而求得的值.【詳解】由題意,函數(shù)可化簡為,所以,所以.故答案為:0.【點睛】本題主要考查了二項式定理的應(yīng)用,以及導(dǎo)數(shù)的運算和函數(shù)值的求解,其中解答中正確化簡函數(shù)的解析式,準(zhǔn)確求解導(dǎo)數(shù)是解答的關(guān)鍵,著重考查了推理與運算能力.14.①③④【解析】
對于①中,當(dāng)點與點重合,與點重合時,可判斷①正確;當(dāng)點點與點重合,與直線所成的角最小為,可判定②不正確;根據(jù)平面將四面體可分成兩個底面均為平面,高之和為的棱錐,可判定③正確;四面體在上下兩個底面和在四個側(cè)面上的投影,均為定值,可判定④正確.【詳解】對于①中,當(dāng)點與點重合,與點重合時,,所以①正確;對于②中,當(dāng)點點與點重合,與直線所成的角最小,此時兩異面直線的夾角為,所以②不正確;對于③中,設(shè)平面兩條對角線交點為,可得平面,平面將四面體可分成兩個底面均為平面,高之和為的棱錐,所以四面體的體積一定是定值,所以③正確;對于④中,四面體在上下兩個底面上的投影是對角線互相垂直且對角線長度均為1的四邊形,其面積為定義,四面體在四個側(cè)面上的投影,均為上底為,下底和高均為1的梯形,其面積為定值,故四面體在該正方體六個面上的正投影的面積的和為定值,所以④正確.故答案為:①③④.【點睛】本題主要考查了以空間幾何體的結(jié)構(gòu)特征為載體的謎題的真假判定及應(yīng)用,其中解答中涉及到棱柱的集合特征,異面直線的關(guān)系和椎體的體積,以及投影的綜合應(yīng)用,著重考查了推理與論證能力,屬于中檔試題.15.π.【解析】
設(shè)三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【詳解】如圖所示,設(shè)三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設(shè)球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構(gòu)成的圖形的面積為π×O【點睛】本題考查三棱錐的外接球的相關(guān)問題,根據(jù)立體幾何中的線段關(guān)系求動點的軌跡,屬于中檔題.16.3【解析】
分析程序中各變量、各語句的作用,根據(jù)流程圖所示的順序,即可得出結(jié)論.【詳解】解:初始,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;經(jīng)判斷,此時跳出循環(huán),輸出.故答案為:【點睛】本題考查了程序框圖的應(yīng)用問題,解題的關(guān)鍵是對算法語句的理解,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當(dāng)觀賞角度的最大時,取得最小值.在中,由余弦定理可得,因為的最大值不小于,所以,解得,經(jīng)驗證知,所以.即兩處噴泉間距離的最小值為.【點睛】本題考查解三角形在實際中的應(yīng)用,解題時要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進行求解.解題時要注意三角形邊角關(guān)系的運用,同時還要注意所得結(jié)果要符合實際意義.18.(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解析】
(1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫列聯(lián)表,計算出的觀測值,即可進行判斷;(2)先計算出時間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計算公式求得分布列,結(jié)合分布列即可求得數(shù)學(xué)期望.【詳解】(1)因為樣本數(shù)據(jù)中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表如下:辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天453075辦理社保手續(xù)所需時間超過4天16560225總計21090300結(jié)合列聯(lián)表可算得.有95%的把握認(rèn)為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).(2)根據(jù)分層抽樣可知時間在可選9人,時間在可以選3名,故,則,,,,可知分布列為0123可知.【點睛】本題考查獨立性檢驗中的計算,以及離散型隨機變量的分布列以及數(shù)學(xué)期望,涉及分層抽樣,屬綜合性中檔題.19.(1)3;(2);(3)見解析.【解析】
(1)依據(jù)下標(biāo)的關(guān)系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項公式知,求出首項和公比即可。利用關(guān)系式,列出方程,可以解出首項和公比;(3)利用等差數(shù)列的定義,即可證出?!驹斀狻浚?)因為對任意,都有,所以,,兩式相加,,解得;(2)設(shè)等比數(shù)列的首項為,公比為,因為對任意,都有,所以有,解得,又,即有,化簡得,,即,或,因為,化簡得,所以故。(3)因為對任意,都有,所以有,成等差數(shù)列,設(shè)公差為,,,,,由等差數(shù)列的定義知,也成等差數(shù)列?!军c睛】本題主要考查等差、等比數(shù)列的定義以及賦值法的應(yīng)用,意在考查學(xué)生的邏輯推理,數(shù)學(xué)建模,綜合運用數(shù)列知識的能力。20.(1)(i)填表見解析(ii)沒有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”(2)詳見解析【解析】
(1)(i)由已給數(shù)據(jù)可完成列聯(lián)表,(ii)計算出后可得;(2)由列聯(lián)表知從運動達人中抽取1個用戶為女用戶的概率為,的取值為,,由二項分布概率公式計算出各概率得分布列,由期望公式計算期望.【詳解】解(1)(i)運動達人非運動達人總計男352560女142640總計4951100(ii)由列聯(lián)表得所以沒有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”(2)由列聯(lián)表知從運動達人中抽取1個用戶為女用戶的概率為,.易知所以的分布列為0123.【點睛】本題考查列聯(lián)表,考查獨立性檢驗,考查隨機變量的概率分布列和期望.屬于中檔題.本題難點在于認(rèn)識到.21.(Ⅰ)詳見解析;(Ⅱ).【解析】
(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國材料高溫物性測定儀市場調(diào)查研究報告
- 2025年中國機械式千斤頂市場調(diào)查研究報告
- 2025年中國無梭機花邊帶數(shù)據(jù)監(jiān)測研究報告
- 2025-2030年中國丁辛醇市場發(fā)展前景與投資規(guī)劃調(diào)查分析報告
- 2025年中國整形銼市場調(diào)查研究報告
- 2025-2030年中國中成藥行業(yè)投資分析及投資商機研究報告
- 新疆科技學(xué)院《細(xì)胞生物學(xué)D》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆石河子市第一中學(xué)2025屆高三下學(xué)期第二次月考(4月)生物試題含解析
- 2025年中國車泵變徑管數(shù)據(jù)監(jiān)測報告
- 2025-2030年中國EL冷光片行業(yè)市場營運趨勢與投資價值評估報告
- 《體育心理學(xué)》第十一章-運動損傷的心理致因與康復(fù)
- 人教版四年級上冊數(shù)學(xué)【選擇題】專項練習(xí)100題附答案
- 數(shù)字船廠智慧園區(qū)整體解決方案兩份資料
- GB/T 31078-2024低溫倉儲作業(yè)規(guī)范
- DL∕T 5863-2023 水電工程地下建筑物安全監(jiān)測技術(shù)規(guī)范
- DL∕T 5461.12-2013 火力發(fā)電廠施工圖設(shè)計文件內(nèi)容深度規(guī)定 第12部分采暖通風(fēng)與空氣調(diào)節(jié)
- DL∕T 846.11-2016 高電壓測試設(shè)備通 用技術(shù)條件 第11部分:特高頻局部放電檢測儀
- DL-T 1476-2023 電力安全工器具預(yù)防性試驗規(guī)程
- 絕緣電阻測試記錄表(范本)
- 國家開放大學(xué)《心理健康教育》形考任務(wù)1-9參考答案
- 侵害未成年人強制報告記錄表格
評論
0/150
提交評論