湖南省永州市祁陽縣第一中學2025年高三總復習質量檢測試題(一)數學試題試卷_第1頁
湖南省永州市祁陽縣第一中學2025年高三總復習質量檢測試題(一)數學試題試卷_第2頁
湖南省永州市祁陽縣第一中學2025年高三總復習質量檢測試題(一)數學試題試卷_第3頁
湖南省永州市祁陽縣第一中學2025年高三總復習質量檢測試題(一)數學試題試卷_第4頁
湖南省永州市祁陽縣第一中學2025年高三總復習質量檢測試題(一)數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省永州市祁陽縣第一中學2025年高三總復習質量檢測試題(一)數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.2.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)3.“十二平均律”是通用的音律體系,明代朱載堉最早用數學方法計算出半音比例,為這個理論的發展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.4.在正方體中,點、分別為、的中點,過點作平面使平面,平面若直線平面,則的值為()A. B. C. D.5.已知定義在上的函數在區間上單調遞增,且的圖象關于對稱,若實數滿足,則的取值范圍是()A. B. C. D.6.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)7.函數在內有且只有一個零點,則a的值為()A.3 B.-3 C.2 D.-28.已知函數,則下列結論中正確的是①函數的最小正周期為;②函數的圖象是軸對稱圖形;③函數的極大值為;④函數的最小值為.A.①③ B.②④C.②③ D.②③④9.已知f(x),g(x)都是偶函數,且在[0,+∞)上單調遞增,設函數F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)10.設全集,集合,,則集合()A. B. C. D.11.某幾何體的三視圖如圖所示,若側視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.12.若(),,則()A.0或2 B.0 C.1或2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.各項均為正數的等比數列中,為其前項和,若,且,則公比的值為_____.14.如圖所示的流程圖中,輸出的值為______.15.設、分別為橢圓:的左、右兩個焦點,過作斜率為1的直線,交于、兩點,則________16.設為正實數,若則的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.18.(12分)數列滿足,,其前n項和為,數列的前n項積為.(1)求和數列的通項公式;(2)設,求的前n項和,并證明:對任意的正整數m、k,均有.19.(12分)已知函數.(1)若函數,試討論的單調性;(2)若,,求的取值范圍.20.(12分)某早餐店對一款新口味的酸奶進行了一段時間試銷,定價為元/瓶.酸奶在試銷售期間足量供應,每天的銷售數據按照,,,分組,得到如下頻率分布直方圖,以不同銷量的頻率估計概率.從試銷售期間任選三天,求其中至少有一天的酸奶銷量大于瓶的概率;試銷結束后,這款酸奶正式上市,廠家只提供整箱批發:大箱每箱瓶,批發成本元;小箱每箱瓶,批發成本元.由于酸奶保質期短,當天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發一箱(計算時每個分組取中間值作為代表,比如銷量為時看作銷量為瓶).①設早餐店批發一大箱時,當天這款酸奶的利潤為隨機變量,批發一小箱時,當天這款酸奶的利潤為隨機變量,求和的分布列和數學期望;②以利潤作為決策依據,該早餐店應每天批發一大箱還是一小箱?注:銷售額=銷量×定價;利潤=銷售額-批發成本.21.(12分)設,,,.(1)若的最小值為4,求的值;(2)若,證明:或.22.(10分)已知點到拋物線C:y1=1px準線的距離為1.(Ⅰ)求C的方程及焦點F的坐標;(Ⅱ)設點P關于原點O的對稱點為點Q,過點Q作不經過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.2、C【解析】

利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.3、D【解析】分析:根據等比數列的定義可知每一個單音的頻率成等比數列,利用等比數列的相關性質可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數列的實際應用,解決本題的關鍵是能夠判斷單音成等比數列.等比數列的判斷方法主要有如下兩種:(1)定義法,若()或(),數列是等比數列;(2)等比中項公式法,若數列中,且(),則數列是等比數列.4、B【解析】

作出圖形,設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,推導出,由線面平行的性質定理可得出,可得出點為的中點,同理可得出點為的中點,結合中位線的性質可求得的值.【詳解】如下圖所示:設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,四邊形為正方形,、分別為、的中點,則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點,同理可證為的中點,,,因此,.故選:B.【點睛】本題考查線段長度比值的計算,涉及線面平行性質的應用,解答的關鍵就是找出平面與正方體各棱的交點位置,考查推理能力與計算能力,屬于中等題.5、C【解析】

根據題意,由函數的圖象變換分析可得函數為偶函數,又由函數在區間上單調遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數的圖象向左平移個單位長度可得函數的圖象,由于函數的圖象關于直線對稱,則函數的圖象關于軸對稱,即函數為偶函數,由,得,函數在區間上單調遞增,則,得,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數的單調性與奇偶性解不等式,注意分析函數的奇偶性,屬于中等題.6、B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.7、A【解析】

求出,對分類討論,求出單調區間和極值點,結合三次函數的圖像特征,即可求解.【詳解】,若,,在單調遞增,且,在不存在零點;若,,在內有且只有一個零點,.故選:A.【點睛】本題考查函數的零點、導數的應用,考查分類討論思想,熟練掌握函數圖像和性質是解題的關鍵,屬于中檔題.8、D【解析】

因為,所以①不正確;因為,所以,,所以,所以函數的圖象是軸對稱圖形,②正確;易知函數的最小正周期為,因為函數的圖象關于直線對稱,所以只需研究函數在上的極大值與最小值即可.當時,,且,令,得,可知函數在處取得極大值為,③正確;因為,所以,所以函數的最小值為,④正確.故選D.9、A【解析】試題分析:由題意得,F(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數的性質;2.分類討論的數學思想.【思路點睛】本題在在解題過程中抓住偶函數的性質,避免了由于單調性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優化,另外,不要忘記定義域,如果要研究奇函數或者偶函數的值域、最值、單調性等問題,通常先在原點一側的區間(對奇(偶)函數而言)或某一周期內(對周期函數而言)考慮,然后推廣到整個定義域上.10、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.11、C【解析】

由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.12、A【解析】

利用復數的模的運算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點睛】本小題主要考查復數模的運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將已知由前n項和定義整理為,再由等比數列性質求得公比,最后由數列各項均為正數,舍根得解.【詳解】因為即又等比數列各項均為正數,故故答案為:【點睛】本題考查在等比數列中由前n項和關系求公比,屬于基礎題.14、4【解析】

根據流程圖依次運行直到,結束循環,輸出n,得出結果.【詳解】由題:,,,結束循環,輸出.故答案為:4【點睛】此題考查根據程序框圖運行結果求輸出值,關鍵在于準確識別循環結構和判斷框語句.15、【解析】

由橢圓的標準方程,求出焦點的坐標,寫出直線方程,與橢圓方程聯立,求出弦長,利用定義可得,進而求出。【詳解】由知,焦點,所以直線:,代入得,即,設,,故由定義有,,所以。【點睛】本題主要考查橢圓的定義、橢圓的簡單幾何性質、以及直線與橢圓位置關系中弦長的求法,注意直線過焦點,位置特殊,采取合適的弦長公式,簡化運算。16、【解析】

根據,可得,進而,有,而,令,得到,再用導數法求解,【詳解】因為,所以,所以,所以,所以,令,,所以,當時,,當時,所以當時,取得最大值,又,所以取值范圍是,故答案為:【點睛】本題主要考查基本不等式的應用和導數法求最值,還考查了運算求解的能力,屬于難題,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)存在,長【解析】

(1)先證面,又因為面,所以平面平面.(2)根據題意建立空間直角坐標系.列出各點的坐標表示,設,則可得出向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長.【詳解】解:(1)證明:因為四邊形為矩形,∴.∵∴∴∴面∴面又∵面∴平面平面(2)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標系.如圖所示:則,,,,,設,;∴,,設平面的法向量為,∴,不防設.∴,化簡得,解得或;當時,,∴;當時,,∴;綜上存在這樣的點,線段的長.【點睛】本題考查平面與平面垂直的判定定理的應用,考查利用線面所成角求參數問題,是幾何綜合題,考查空間想象力以及計算能力.18、(1),;(2),證明見解析【解析】

(1)利用已知條件建立等量關系求出數列的通項公式.(2)利用裂項相消法求出數列的和,進一步利用放縮法求出結論.【詳解】(1),,得是公比為的等比數列,,,當時,數列的前項積為,則,兩式相除得,得,又得,;(2),故.【點睛】本題考查的知識要點:數列的通項公式的求法及應用,數列的前項和的應用,裂項相消法在數列求和中的應用,主要考查學生的運算能力和轉換能力,屬于中檔題.19、(1)答案不唯一,具體見解析(2)【解析】

(1)由于函數,得出,分類討論當和時,的正負,進而得出的單調性;(2)求出,令,得,設,通過導函數,可得出在上的單調性和值域,再分類討論和時,的單調性,再結合,恒成立,即可求出的取值范圍.【詳解】解:(1)因為,所以,①當時,,在上單調遞減.②當時,令,則;令,則,所以在單調遞增,在上單調遞減.綜上所述,當時,在上單調遞減;當時,在上單調遞增,在上單調遞減.(2)因為,可知,,令,得.設,則.當時,,在上單調遞增,所以在上的值域是,即.當時,沒有實根,且,在上單調遞減,,符合題意.當時,,所以有唯一實根,當時,,在上單調遞增,,不符合題意.綜上,,即的取值范圍為.【點睛】本題考查利用導數研究函數的單調性和根據恒成立問題求參數范圍,還運用了構造函數法,還考查分類討論思想和計算能力,屬于難題.20、;①詳見解析;②應該批發一大箱.【解析】

酸奶每天銷量大于瓶的概率為,不大于瓶的概率為,設“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.利用對立事件概率公式求解即可.①若早餐店批發一大箱,批發成本為元,依題意,銷量有,,,四種情況,分別求出相應概率,列出分布列,求出的數學期望,若早餐店批發一小箱,批發成本為元,依題意,銷量有,兩種情況,分別求出相應概率,由此求出的分布列和數學期望;②根據①中的計算結果,,從而早餐應該批發一大箱.【詳解】解:根據圖中數據,酸奶每天銷量大于瓶的概率為,不大于瓶的概率為.設“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.所以.①若早餐店批發一大箱,批發成本為元,依題意,銷量有,,,四種情況.當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元.隨機變量的分布列為所以(元)若早餐店批發一小箱,批發成本為元,依題意,銷量有,兩種情況.當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元.隨機變量的分布列為所以(元).②根據①中的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論