湖北省鄂州市第一中學2025屆高三第三次(1月)調研考試數學試題_第1頁
湖北省鄂州市第一中學2025屆高三第三次(1月)調研考試數學試題_第2頁
湖北省鄂州市第一中學2025屆高三第三次(1月)調研考試數學試題_第3頁
湖北省鄂州市第一中學2025屆高三第三次(1月)調研考試數學試題_第4頁
湖北省鄂州市第一中學2025屆高三第三次(1月)調研考試數學試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省鄂州市第一中學2025屆高三第三次(1月)調研考試數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平行四邊形中,若則()A. B. C. D.2.已知與分別為函數與函數的圖象上一點,則線段的最小值為()A. B. C. D.63.運行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.4.如圖,正方體中,,,,分別為棱、、、的中點,則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線5.設,若函數在區間上有三個零點,則實數的取值范圍是()A. B. C. D.6.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-287.已知復數,其中,,是虛數單位,則()A. B. C. D.8.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.9.已知函數的定義域為,則函數的定義域為()A. B.C. D.10.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得11.對于定義在上的函數,若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數 B.在上是增函數C.不是函數的最小值 D.對于,都有12.已知函數,若關于的方程有且只有一個實數根,則實數的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數的部分圖象如圖所示,則的值為____________.14.若函數為自然對數的底數)在和兩處取得極值,且,則實數的取值范圍是______.15.已知橢圓的左右焦點分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為________.16.已知為橢圓的左、右焦點,點在橢圓上移動時,的內心的軌跡方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了更好地了解市民的態度,在普通行人中隨機選取了200人進行調查,當不處罰時,有80人會闖紅燈,處罰時,得到如表數據:處罰金額(單位:元)5101520會闖紅燈的人數50402010若用表中數據所得頻率代替概率.(1)當罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低多少?(2)將選取的200人中會闖紅燈的市民分為兩類:類市民在罰金不超過10元時就會改正行為;類是其他市民.現對類與類市民按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類市民的概率是多少?18.(12分)已知x,y,z均為正數.(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.19.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數).以原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系.(1)設直線l的極坐標方程為,若直線l與曲線C交于兩點A.B,求AB的長;(2)設M、N是曲線C上的兩點,若,求面積的最大值.20.(12分)在某社區舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,問張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數學期望.21.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.22.(10分)已知等差數列滿足,公差,等比數列滿足,,.求數列,的通項公式;若數列滿足,求的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由,,利用平面向量的數量積運算,先求得利用平行四邊形的性質可得結果.【詳解】如圖所示,

平行四邊形中,,

,,,

因為,

所以

,

,所以,故選C.【點睛】本題主要考查向量的幾何運算以及平面向量數量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).2、C【解析】

利用導數法和兩直線平行性質,將線段的最小值轉化成切點到直線距離.【詳解】已知與分別為函數與函數的圖象上一點,可知拋物線存在某條切線與直線平行,則,設拋物線的切點為,則由可得,,所以切點為,則切點到直線的距離為線段的最小值,則.故選:C.【點睛】本題考查導數的幾何意義的應用,以及點到直線的距離公式的應用,考查轉化思想和計算能力.3、B【解析】

由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應填?故選:.【點睛】本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,是基礎題.4、C【解析】

充分利用正方體的幾何特征,利用線面平行的判定定理,根據判斷A的正誤.根據,判斷B的正誤.根據與相交,判斷C的正誤.根據,判斷D的正誤.【詳解】在正方體中,因為,所以平面,故A正確.因為,所以,所以平面故B正確.因為,所以平面,故D正確.因為與相交,所以與平面相交,故C錯誤.故選:C【點睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.5、D【解析】令,可得.在坐標系內畫出函數的圖象(如圖所示).當時,.由得.設過原點的直線與函數的圖象切于點,則有,解得.所以當直線與函數的圖象切時.又當直線經過點時,有,解得.結合圖象可得當直線與函數的圖象有3個交點時,實數的取值范圍是.即函數在區間上有三個零點時,實數的取值范圍是.選D.點睛:已知函數零點的個數(方程根的個數)求參數值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解,對于一些比較復雜的函數的零點問題常用此方法求解.6、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.7、D【解析】試題分析:由,得,則,故選D.考點:1、復數的運算;2、復數的模.8、D【解析】

先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.9、A【解析】試題分析:由題意,得,解得,故選A.考點:函數的定義域.10、A【解析】

根據題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關系,考查三角函數的圖象和性質,意在考查學生對這些知識的理解掌握水平.11、B【解析】

根據函數對稱性和單調性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數,在在上是增函數,則為函數的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點睛】本題主要考查函數性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.12、B【解析】

利用換元法設,則等價為有且只有一個實數根,分三種情況進行討論,結合函數的圖象,求出的取值范圍.【詳解】解:設,則有且只有一個實數根.當時,當時,,由即,解得,結合圖象可知,此時當時,得,則是唯一解,滿足題意;當時,此時當時,,此時函數有無數個零點,不符合題意;當時,當時,,此時最小值為,結合圖象可知,要使得關于的方程有且只有一個實數根,此時.綜上所述:或.故選:A.【點睛】本題考查了函數方程根的個數的應用.利用換元法,數形結合是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點睛】本題考查由圖象求解析式及函數值,考查學生識圖、計算等能力,是一道中檔題.14、【解析】

先將函數在和兩處取得極值,轉化為方程有兩不等實根,且,再令,將問題轉化為直線與曲線有兩交點,且橫坐標滿足,用導數方法研究單調性,作出簡圖,求出時,的值,進而可得出結果.【詳解】因為,所以,又函數在和兩處取得極值,所以是方程的兩不等實根,且,即有兩不等實根,且,令,則直線與曲線有兩交點,且交點橫坐標滿足,又,由得,所以,當時,,即函數在上單調遞增;當,時,,即函數在和上單調遞減;當時,由得,此時,因此,由得.故答案為【點睛】本題主要考查導數的應用,已知函數極值點間的關系求參數的問題,通常需要將函數極值點,轉化為導函數對應方程的根,再轉化為直線與曲線交點的問題來處理,屬于常考題型.15、【解析】

由題得直線的方程為,代入橢圓方程得:,設點,則有,由,且解出,進而求解出離心率.【詳解】由題知,直線的方程為,代入消得:,設點,則有,,而,又,解得:,所以離心率.故答案為:【點睛】本題主要考查了直線與橢圓的位置關系,三角形面積計算與離心率的求解,考查了學生的運算求解能力16、【解析】

考查更為一般的問題:設P為橢圓C:上的動點,為橢圓的兩個焦點,為△PF1F2的內心,求點I的軌跡方程.解法一:如圖,設內切圓I與F1F2的切點為H,半徑為r,且F1H=y,F2H=z,PF1=x+y,PF2=x+z,,則.直線IF1與IF2的斜率之積:,而根據海倫公式,有△PF1F2的面積為因此有.再根據橢圓的斜率積定義,可得I點的軌跡是以F1F2為長軸,離心率e滿足的橢圓,其標準方程為.解法二:令,則.三角形PF1F2的面積:,其中r為內切圓的半徑,解得.另一方面,由內切圓的性質及焦半徑公式得:從而有.消去θ得到點I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)降低(2)【解析】

(1)計算出罰金定為10元時行人闖紅燈的概率,和不進行處罰時行人闖紅燈的概率,求解即可;(2)闖紅燈的市民有80人,其中類市民和類市民各有40人,根據分層抽樣法抽出4人依次排序,計算所求的概率值.【詳解】解:(1)當罰金定為10元時,行人闖紅燈的概率為;不進行處罰,行人闖紅燈的概率為;所以當罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低;(2)由題可知,闖紅燈的市民有80人,類市民和類市民各有40人故分別從類市民和類市民各抽出兩人,4人依次排序記類市民中抽取的兩人對應的編號為,類市民中抽取的兩人編號為則4人依次排序分別為,,,,,,,,,,,,共有種前兩位均為類市民排序為,,有種,所以前兩位均為類市民的概率是.【點睛】本題主要考查了計算古典概型的概率,屬于中檔題.18、(1)證明見解析;(2)最小值為1【解析】

(1)利用基本不等式可得,再根據0<xy<1時,即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數,∴|x+z|?|y+z|=(x+z)(y+z)≥=,當且僅當x=y=z時取等號.又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當且僅當x=y=z=1時取等號,∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉化思想和運算能力,屬中檔題.19、(1);(2)1.【解析】

(1)利用參數方程、普通方程、極坐標方程間的互化公式即可;(2),,由(1)通過計算得到,即最大值為1.【詳解】(1)將曲線C的參數方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標方程為,顯然直線l與曲線C相交的兩點中,必有一個為原點O,不妨設O與A重合,即.(2)不妨設,,則面積為當,即取時,.【點睛】本題考查參數方程、普通方程、極坐標方程間的互化,三角形面積的最值問題,是一道容易題.20、(1)(2)詳見解析【解析】

(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨立事件概率計算公式,計算出所求概率.(2)求得的所有可能取值,根據相互獨立事件概率計算公式,計算出分布列并求得數學期望.【詳解】(1)由題意,當家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,所以要想領取一臺全自動洗衣機,則需要這個家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論