




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省汕頭市潮師高中高三五校5月適應性考試數學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,,則下列結論正確的是()A. B. C. D.2.已知函數,若關于的不等式恰有1個整數解,則實數的最大值為()A.2 B.3 C.5 D.83.復數的共軛復數為()A. B. C. D.4.已知x,y滿足不等式,且目標函數z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]5.設全集,集合,,則集合()A. B. C. D.6.已知不重合的平面和直線,則“”的充分不必要條件是()A.內有無數條直線與平行 B.且C.且 D.內的任何直線都與平行7.某醫院擬派2名內科醫生、3名外科醫生和3名護士共8人組成兩個醫療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫生、外科醫生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種8.拋擲一枚質地均勻的硬幣,每次正反面出現的概率相同,連續拋擲5次,至少連續出現3次正面朝上的概率是()A. B. C. D.9.已知為虛數單位,實數滿足,則()A.1 B. C. D.10.下列幾何體的三視圖中,恰好有兩個視圖相同的幾何體是()A.正方體 B.球體C.圓錐 D.長寬高互不相等的長方體11.曲線在點處的切線方程為,則()A. B. C.4 D.812.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,,則___________.14.如果函數(,且,)在區間上單調遞減,那么的最大值為__________.15.(5分)已知橢圓方程為,過其下焦點作斜率存在的直線與橢圓交于兩點,為坐標原點,則面積的取值范圍是____________.16.角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經過點P(1,2),則sin(π﹣α)的值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,側面為等邊三角形,且垂直于底面,,分別是的中點.(1)證明:平面平面;(2)已知點在棱上且,求直線與平面所成角的余弦值.18.(12分)已知函數,.(1)當時,求不等式的解集;(2)若函數的圖象與軸恰好圍成一個直角三角形,求的值.19.(12分)設函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若函數的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.20.(12分)2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內報名人數便突破60萬,其中青年學生約有50萬人.現從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統計結果用莖葉圖記錄如下:(Ⅰ)試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數;(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數為X,求的分布列和數學期望;(Ⅲ)為便于聯絡,現將所有的青年學生志愿者隨機分成若干組(每組人數不少于5000),并在每組中隨機選取個人作為聯絡員,要求每組的聯絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據圖表中數據,以頻率作為概率,給出的最小值.(結論不要求證明)21.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.22.(10分)已知函數(1)若對任意恒成立,求實數的取值范圍;(2)求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數學運算能力,屬于基礎題.2.D【解析】
畫出函數的圖象,利用一元二次不等式解法可得解集,再利用數形結合即可得出.【詳解】解:函數,如圖所示當時,,由于關于的不等式恰有1個整數解因此其整數解為3,又∴,,則當時,,則不滿足題意;當時,當時,,沒有整數解當時,,至少有兩個整數解綜上,實數的最大值為故選:D【點睛】本題主要考查了根據函數零點的個數求參數范圍,屬于較難題.3.D【解析】
直接相乘,得,由共軛復數的性質即可得結果【詳解】∵∴其共軛復數為.故選:D【點睛】熟悉復數的四則運算以及共軛復數的性質.4.B【解析】
作出可行域,對t進行分類討論分析目標函數的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當t≤2時,可行域即為如圖中的△OAM,此時目標函數z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標函數Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規劃,根據可行域結合目標函數的最大值的取值范圍求參數的取值范圍,涉及分類討論思想,關鍵在于熟練掌握截距型目標函數的最大值最優解的處理辦法.5.C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.6.B【解析】
根據充分不必要條件和直線和平面,平面和平面的位置關系,依次判斷每個選項得到答案.【詳解】A.內有無數條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內的任何直線都與平行,故,若,則內的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關系,意在考查學生的綜合應用能力.7.B【解析】
根據條件2名內科醫生,每個村一名,3名外科醫生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫生,每個村一名,有2種方法,3名外科醫生和3名護士,平均分成兩組,要求外科醫生和護士都有,則分1名外科,2名護士和2名外科醫生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于常考題型.8.A【解析】
首先求出樣本空間樣本點為個,再利用分類計數原理求出三個正面向上為連續的3個“1”的樣本點個數,再求出重復數量,可得事件的樣本點數,根據古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復,重復數量為,事件的樣本點數為:個.故不同的樣本點數為8個,.故選:A【點睛】本題考查了分類計數原理與分步計數原理,古典概型的概率計算公式,屬于基礎題9.D【解析】,則故選D.10.C【解析】
根據基本幾何體的三視圖確定.【詳解】正方體的三個三視圖都是相等的正方形,球的三個三視圖都是相等的圓,圓錐的三個三視圖有一個是圓,另外兩個是全等的等腰三角形,長寬高互不相等的長方體的三視圖是三個兩兩不全等的矩形.故選:C.【點睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關鍵.11.B【解析】
求函數導數,利用切線斜率求出,根據切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數的幾何意義,切線方程,屬于中檔題.12.B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質及橢圓的定義.求解與橢圓性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯系.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
因為,所以,又,所以,則,所以.14.18【解析】
根據函數單調性的性質,分一次函數和一元二次函數的對稱性和單調區間的關系建立不等式,利用基本不等式求解即可.【詳解】解:①當時,,在區間上單調遞減,則,即,則.②當時,,函數開口向上,對稱軸為,因為在區間上單調遞減,則,因為,則,整理得,又因為,則.所以即,所以當且僅當時等號成立.綜上所述,的最大值為18.故答案為:18【點睛】本題主要考查一次函數與二次函數的單調性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.15.【解析】
由題意,,則,得.由題意可設的方程為,,聯立方程組,消去得,恒成立,,,則,點到直線的距離為,則,又,則,當且僅當即時取等號.故面積的取值范圍是.16.【解析】
計算sinα,再利用誘導公式計算得到答案.【詳解】由題意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案為:.【點睛】本題考查了三角函數定義,誘導公式,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】
(1)由平面幾何知識可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標系,可求得面PAB的法向量,再運用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點,,故面,又且,故四邊形是平行四邊形,面,又,是面內的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設是平面PAB的法向量,,令,則,,直線NE與平面所成角的余弦值為.【點睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.18.(1)(2)【解析】
(1)當時,,由可得,(所以,解得,所以不等式的解集為.(2)由題可得,因為函數的圖象與軸恰好圍成一個直角三角形,所以,解得,當時,,函數的圖象與軸沒有交點,不符合題意;當時,,函數的圖象與軸恰好圍成一個直角三角形,符合題意.綜上,可得.19.(1)(2)【解析】
(Ⅰ)當時,不等式為.若,則,解得或,結合得或.若,則,不等式恒成立,結合得.綜上所述,不等式解集為.(Ⅱ)則的圖象與直線所圍成的四邊形為梯形,令,得,令,得,則梯形上底為,下底為11,高為..化簡得,解得,結合,得的取值范圍為.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.20.(Ⅰ)萬;(Ⅱ)分布列見解析,;(Ⅲ)【解析】
(Ⅰ)根據比例關系直接計算得到答案.(Ⅱ)的可能取值為,計算概率得到分布列,再計算數學期望得到答案.(Ⅲ)英語測試成績在70分以上的概率為,故,解得答案.【詳解】(Ⅰ)樣本中女生英語成績在分以上的有人,故人數為:萬人.(Ⅱ)8名男生中,測試成績在70分以上的有人,的可能取值為:.,,.故分布列為:.(Ⅲ)英語測試成績在70分以上的概率為,故,故.故的最小值為.【點睛】本題考查了樣本估計總體,分布列,數學期望,意在考查學生的計算能力和綜合應用能力.21.(1)見解析;(2)【解析】
(1)設中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設中點為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內二相交直線,平面平面,平面DMN,平面;(2)設中點為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設,則在中,由余弦定理,得:又,,,,,為中點,,建立直角坐標系(如圖),則,,,.,,設平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點睛】本題考查面面平行證明線面平行,考查向量法求二面角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商業交易合同協議
- 品牌電商合作合同協議
- 品牌崗位合同協議
- 商業合同解約協議書范本
- 員工離職終止合同協議
- 快遞收派服務合同協議
- 商品房屋合同協議
- 商品結算合同協議
- 品牌套裝拆賣合同協議
- 員工股東分紅合同協議
- (2024年)肺栓塞課件
- 2024吉林省民航機場集團有限公司招聘筆試參考題庫附帶答案詳解
- 電磁現象及其應用-理解電磁現象及其在日常生活中的應用
- 車輛行駛安全培訓模板
- 開展中醫藥健康文化宣傳活動方案(樣式)
- 油漆涂料行業市場分析
- 呼吸道合胞病毒知識科普
- 跨境數據流動與治理
- 輸血治療知情同意書
- 幼兒園副園長聘任園長合同(36篇)
- 30道中國石油天然氣地球物理勘探工程師崗位常見面試問題含HR常問問題考察點及參考回答
評論
0/150
提交評論