河南省信陽市示范名校2025年高三教學質量檢測試題考試數學試題_第1頁
河南省信陽市示范名校2025年高三教學質量檢測試題考試數學試題_第2頁
河南省信陽市示范名校2025年高三教學質量檢測試題考試數學試題_第3頁
河南省信陽市示范名校2025年高三教學質量檢測試題考試數學試題_第4頁
河南省信陽市示范名校2025年高三教學質量檢測試題考試數學試題_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省信陽市示范名校2025年高三教學質量檢測試題考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的圖象可能是()A. B. C. D.2.已知公差不為0的等差數列的前項的和為,,且成等比數列,則()A.56 B.72 C.88 D.403.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.4.設函數在上可導,其導函數為,若函數在處取得極大值,則函數的圖象可能是()A. B.C. D.5.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.6.若復數是純虛數,則()A.3 B.5 C. D.7.設且,則下列不等式成立的是()A. B. C. D.8.已知函數,若關于的方程有4個不同的實數根,則實數的取值范圍為()A. B. C. D.9.已知隨機變量服從正態分布,且,則()A. B. C. D.10.的展開式中各項系數的和為2,則該展開式中常數項為A.-40 B.-20 C.20 D.4011.曲線在點處的切線方程為,則()A. B. C.4 D.812.下列函數中,值域為的偶函數是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則a的取值范圍是______.14.已知F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),則△PMF周長的最小值是_____.15.學校藝術節對同一類的,,,四件參賽作品,只評一件一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:甲說:“或作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“作品獲得一等獎”.若這四位同學中有且只有兩位說的話是對的,則獲得一等獎的作品是______.16.若復數(是虛數單位),則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對應的變換作用下得到另一曲線,求曲線的方程.18.(12分)某機構組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據自己的喜愛程度對其排序,然后由家長猜測小孩的排序結果.設小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數字的一種排列.定義隨機變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習慣的了解程度.(1)若參與游戲的家長對小孩的飲食習慣完全不了解.(ⅰ)求他們在一輪游戲中,對四種食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細計算過程);(2)若有一組小孩和家長進行來三輪游戲,三輪的結果都滿足X<4,請判斷這位家長對小孩飲食習慣是否了解,說明理由.19.(12分)已知函數.(1)若函數,求的極值;(2)證明:.(參考數據:)20.(12分)在數列中,,(1)求數列的通項公式;(2)若存在,使得成立,求實數的最小值21.(12分)已知橢圓的離心率為是橢圓的一個焦點,點,直線的斜率為1.(1)求橢圓的方程;(1)若過點的直線與橢圓交于兩點,線段的中點為,是否存在直線使得?若存在,求出的方程;若不存在,請說明理由.22.(10分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數).以原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系.(1)設直線l的極坐標方程為,若直線l與曲線C交于兩點A.B,求AB的長;(2)設M、N是曲線C上的兩點,若,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

先判斷函數的奇偶性,以及該函數在區間上的函數值符號,結合排除法可得出正確選項.【詳解】函數的定義域為,,該函數為偶函數,排除B、D選項;當時,,排除C選項.故選:A.【點睛】本題考查根據函數的解析式辨別函數的圖象,一般分析函數的定義域、奇偶性、單調性、零點以及函數值符號,結合排除法得出結果,考查分析問題和解決問題的能力,屬于中等題.2.B【解析】

,將代入,求得公差d,再利用等差數列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數列的前n項和公式,考查等差數列基本量的計算,是一道容易題.3.A【解析】

利用雙曲線:的焦點到漸近線的距離為,求出,的關系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點睛】本題考查雙曲線的簡單性質的應用,構建出的關系是解題的關鍵,考查計算能力,屬于中檔題.4.B【解析】

由題意首先確定導函數的符號,然后結合題意確定函數在區間和處函數的特征即可確定函數圖像.【詳解】函數在上可導,其導函數為,且函數在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據函數取得極大值,判斷導函數在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.5.D【解析】

設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【詳解】設,,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.6.C【解析】

先由已知,求出,進一步可得,再利用復數模的運算即可【詳解】由z是純虛數,得且,所以,.因此,.故選:C.【點睛】本題考查復數的除法、復數模的運算,考查學生的運算能力,是一道基礎題.7.A【解析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.8.C【解析】

求導,先求出在單增,在單減,且知設,則方程有4個不同的實數根等價于方程在上有兩個不同的實數根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當時,,當,,且,故方程在上有兩個不同的實數根,故,解得.故選:C.【點睛】本題考查確定函數零點或方程根個數.其方法:(1)構造法:構造函數(易求,可解),轉化為確定的零點個數問題求解,利用導數研究該函數的單調性、極值,并確定定義區間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數形結合求解;(2)定理法:先用零點存在性定理判斷函數在某區間上有零點,然后利用導數研究函數的單調性、極值(最值)及區間端點值符號,進而判斷函數在該區間上零點的個數.9.C【解析】

根據在關于對稱的區間上概率相等的性質求解.【詳解】,,,.故選:C.【點睛】本題考查正態分布的應用.掌握正態曲線的性質是解題基礎.隨機變量服從正態分布,則.10.D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應的常數項=80,由5-2r=-1得r=3,對應的常數項=-40,故所求的常數項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數項==-40+80=4011.B【解析】

求函數導數,利用切線斜率求出,根據切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數的幾何意義,切線方程,屬于中檔題.12.C【解析】試題分析:A中,函數為偶函數,但,不滿足條件;B中,函數為奇函數,不滿足條件;C中,函數為偶函數且,滿足條件;D中,函數為偶函數,但,不滿足條件,故選C.考點:1、函數的奇偶性;2、函數的值域.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

函數等價為,由二次函數的單調性可得在R上遞增,即為,可得a的不等式,解不等式即可得到所求范圍.【詳解】,等價為,且時,遞增,時,遞增,且,在處函數連續,可得在R上遞增,即為,可得,解得,即a的取值范圍是.故答案為:.【點睛】本題考查分段函數的單調性的判斷和運用:解不等式,考查轉化思想和運算能力,屬于中檔題.14.5【解析】

△PMF的周長最小,即求最小,過做拋物線準線的垂線,垂足為,轉化為求最小,數形結合即可求解.【詳解】如圖,F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),拋物線C:x2=8y的焦點為F(0,2),準線方程為y=﹣2.過作準線的垂線,垂足為,則有,當且僅當三點共線時,等號成立,所以△PMF的周長最小值為55.故答案為:5.【點睛】本題考查拋物線定義的應用,考查數形結合與數學轉化思想方法,屬于中檔題.15.B【解析】

首先根據“學校藝術節對四件參賽作品只評一件一等獎”,故假設分別為一等獎,然后判斷甲、乙、丙、丁四位同學的說法的正確性,即可得出結果.【詳解】若A為一等獎,則甲、丙、丁的說法均錯誤,不滿足題意;若B為一等獎,則乙、丙的說法正確,甲、丁的說法錯誤,滿足題意;若C為一等獎,則甲、丙、丁的說法均正確,不滿足題意;若D為一等獎,則乙、丙、丁的說法均錯誤,不滿足題意;綜上所述,故B獲得一等獎.【點睛】本題屬于信息題,可根據題目所給信息來找出解題所需要的條件并得出答案,在做本題的時候,可以采用依次假設為一等獎并通過是否滿足題目條件來判斷其是否正確.16.【解析】

直接根據復數的代數形式四則運算法則計算即可.【詳解】,.【點睛】本題主要考查復數的代數形式四則運算法則的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.【解析】

根據,可解得,設為曲線任一點,在矩陣對應的變換作用下得到點,則點在曲線上,根據變換的定義寫出相應的矩陣等式,再用表示出,代入曲線的方程中,即得.【詳解】,,即.,解得,.設為曲線任一點,則,又設在矩陣A變換作用得到點,則,即,所以即代入,得,所以曲線的方程為.【點睛】本題考查逆矩陣,矩陣與變換等,是基礎題.18.(1)(ⅰ)(ⅱ)分布表見解析;(2)理由見解析【解析】

(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結果,利用列舉法求出其中滿足“家長的排序與對應位置的數字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.

(ii)根據(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,由此能求出X的分布列.

(2)假設家長對小孩的飲食習慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結果都滿足“X<4”的概率為,這個結果發生的可能性很小,從而這位家長對小孩飲食習慣比較了解.【詳解】(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,先考慮小孩的排序為xA,xB,xC,xD為1234的情況,家長的排序有=24種等可能結果,其中滿足“家長的排序與對應位置的數字完全不同”的情況有9種,分別為:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家長的排序與對應位置的數字完全不同的概率P=.基小孩對四種食物的排序是其他情況,只需將角標A,B,C,D按照小孩的順序調整即可,假設小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實這樣處理后與第一種情況的計算結果是一致的,∴他們在一輪游戲中,對四種食物排出的序號完全不同的概率為.(ii)根據(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,列出所有情況,分別計算每種情況下的x的值,X的分布列如下表:X02468101214161820P(2)這位家長對小孩的飲食習慣比較了解.理由如下:假設家長對小孩的飲食習慣完全不了解,由(1)可知,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結果都滿足“X<4”的概率為()3=,這個結果發生的可能性很小,∴這位家長對小孩飲食習慣比較了解.【點睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎知識,考查運算求解能力,是中檔題.19.(1)見解析;(1)見證明【解析】

(1)求出函數的導數,解關于導函數的不等式,求出函數的單調區間,從而求出函數的極值即可;(1)問題轉化為證ex﹣x1﹣xlnx﹣1>0,根據xlnx≤x(x﹣1),問題轉化為只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根據函數的單調性證明即可.【詳解】(1),,當,,當,,在上遞增,在上遞減,在取得極大值,極大值為,無極大值.(1)要證f(x)+1<ex﹣x1.即證ex﹣x1﹣xlnx﹣1>0,先證明lnx≤x﹣1,取h(x)=lnx﹣x+1,則h′(x)=,易知h(x)在(0,1)遞增,在(1,+∞)遞減,故h(x)≤h(1)=0,即lnx≤x﹣1,當且僅當x=1時取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),則k′(x)=ex﹣4x+1,令F(x)=k′(x),則F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)遞增,故x∈(0,1ln1]時,F′(x)≤0,F(x)遞減,即k′(x)遞減,x∈(1ln1,+∞)時,F′(x)>0,F(x)遞增,即k′(x)遞增,且k′(1ln1)=5﹣8ln1<0,k′(0)=1>0,k′(1)=e1﹣8+1>0,由零點存在定理,可知?x1∈(0,1ln1),?x1∈(1ln1,1),使得k′(x1)=k′(x1)=0,故0<x<x1或x>x1時,k′(x)>0,k(x)遞增,當x1<x<x1時,k′(x)<0,k(x)遞減,故k(x)的最小值是k(0)=0或k(x1),由k′(x1)=0,得=4x1﹣1,k(x1)=﹣1+x1﹣1=﹣(x1﹣1)(1x1﹣1),∵x1∈(1ln1,1),∴k(x1)>0,故x>0時,k(x)>0,原不等式成立.【點睛】本題考查了函數的單調性,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論