黑龍江省綏化市普通高中2025年高三下-等級考調研(二模)數學試題試卷_第1頁
黑龍江省綏化市普通高中2025年高三下-等級考調研(二模)數學試題試卷_第2頁
黑龍江省綏化市普通高中2025年高三下-等級考調研(二模)數學試題試卷_第3頁
黑龍江省綏化市普通高中2025年高三下-等級考調研(二模)數學試題試卷_第4頁
黑龍江省綏化市普通高中2025年高三下-等級考調研(二模)數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省綏化市普通高中2025年高三下-等級考調研(二模)數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.展開項中的常數項為A.1 B.11 C.-19 D.512.設是等差數列的前n項和,且,則()A. B. C.1 D.23.已知方程表示的曲線為的圖象,對于函數有如下結論:①在上單調遞減;②函數至少存在一個零點;③的最大值為;④若函數和圖象關于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④4.函數的最大值為,最小正周期為,則有序數對為()A. B. C. D.5.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取得最大值時,雙曲線的離心率為()A. B. C. D.6.已知復數,則的虛部為()A.-1 B. C.1 D.7.函數的圖象大致為()A. B.C. D.8.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.9.如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實現了增長C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個D.去年同期浙江省的GDP總量超過了4500億元10.下列函數中,既是奇函數,又在上是增函數的是().A. B.C. D.11.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.512.數學中的數形結合,也可以組成世間萬物的絢麗畫面.一些優美的曲線是數學形象美、對稱美、和諧美的結合產物,曲線恰好是四葉玫瑰線.給出下列結論:①曲線C經過5個整點(即橫、縱坐標均為整數的點);②曲線C上任意一點到坐標原點O的距離都不超過2;③曲線C圍成區域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結論的序號是()A.①③ B.②④ C.①②③ D.②③④二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,滿足,,,則的取值范圍為_________.14.在中,,.若,則_________.15.在疫情防控過程中,某醫院一次性收治患者127人.在醫護人員的精心治療下,第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果從第16天開始,每天出院的人數是前一天出院人數的2倍,那么第19天治愈出院患者的人數為_______________,第_______________天該醫院本次收治的所有患者能全部治愈出院.16.設實數,若函數的最大值為,則實數的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(Ⅰ)當時,討論函數的單調區間;(Ⅱ)若對任意的和恒成立,求實數的取值范圍.18.(12分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對角線AC與BD交于點O,VO⊥平面ABCD,E是棱VC的中點.(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.19.(12分)已知函數,函數().(1)討論的單調性;(2)證明:當時,.(3)證明:當時,.20.(12分)在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入.為了對新研發的產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組檢測數據如表所示:試銷價格(元)產品銷量(件)已知變量且有線性負相關關系,現有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數據與檢測數據的誤差不超過,則稱該檢測數據是“理想數據”,現從檢測數據中隨機抽取個,求“理想數據”的個數的分布列和數學期望.21.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.22.(10分)在直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸,建立極坐標系.已知點的直角坐標為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標方程和曲線的普通方程;(2)求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.2.C【解析】

利用等差數列的性質化簡已知條件,求得的值.【詳解】由于等差數列滿足,所以,,.故選:C【點睛】本小題主要考查等差數列的性質,屬于基礎題.3.C【解析】

分四類情況進行討論,然后畫出相對應的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當時,,此時不存在圖象;(2)當時,,此時為實軸為軸的雙曲線一部分;(3)當時,,此時為實軸為軸的雙曲線一部分;(4)當時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調遞減,所以①正確;對于②,函數與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數圖象的對稱性可知③錯誤;對于④,函數和圖象關于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數的圖象與性質,函數的零點概念,考查了數形結合的數學思想.4.B【解析】函數(為輔助角)∴函數的最大值為,最小正周期為故選B5.D【解析】

先求出四個頂點、四個焦點的坐標,四個頂點構成一個菱形,求出菱形的面積,四個焦點構成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.6.A【解析】

分子分母同乘分母的共軛復數即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復數的除法運算,考查學生運算能力,是一道容易題.7.A【解析】

用偶函數的圖象關于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數為偶函數,圖象關于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據函數的性質,辨析函數的圖像,排除法,屬于中檔題.8.C【解析】

畫出圖形,以為基底將向量進行分解后可得結果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應用平面向量基本定理應注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質就是利用平行四邊形法則或三角形法則進行向量的加減運算或數乘運算.9.D【解析】

根據折線圖、柱形圖的性質,對選項逐一判斷即可.【詳解】由折線圖可知A、B項均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個.故C項正確;.故D項不正確.故選:D.【點睛】本題考查折線圖、柱形圖的識別,考查學生的閱讀能力、數據處理能力,屬于中檔題.10.B【解析】

奇函數滿足定義域關于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數,錯誤;B:定義域關于原點對稱,且滿足奇函數,又,所以在上,正確;C:定義域關于原點對稱,且滿足奇函數,,在上,因為,所以在上不是增函數,錯誤;D:定義域關于原點對稱,且,滿足奇函數,在上很明顯存在變號零點,所以在上不是增函數,錯誤;故選:B【點睛】此題考查判斷函數奇偶性和單調性,注意奇偶性的前提定義域關于原點對稱,屬于簡單題目.11.D【解析】

根據雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.12.B【解析】

利用基本不等式得,可判斷②;和聯立解得可判斷①③;由圖可判斷④.【詳解】,解得(當且僅當時取等號),則②正確;將和聯立,解得,即圓與曲線C相切于點,,,,則①和③都錯誤;由,得④正確.故選:B.【點睛】本題考查曲線與方程的應用,根據方程,判斷曲線的性質及結論,考查學生邏輯推理能力,是一道有一定難度的題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設,,,,由,,,根據平面向量模的幾何意義,可得A點軌跡為以O為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,為的距離,利用數形結合求解.【詳解】設,,,,如圖所示:因為,,,所以A點軌跡為以O為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,則即的距離,由圖可知,.故答案為:【點睛】本題主要考查平面向量的模及運算的幾何意義,還考查了數形結合的方法,屬于中檔題.14.【解析】分析:首先設出相應的直角邊長,利用余弦勾股定理得到相應的斜邊長,之后應用余弦定理得到直角邊長之間的關系,從而應用正切函數的定義,對邊比臨邊,求得對應角的正切值,即可得結果.詳解:根據題意,設,則,根據,得,由勾股定理可得,根據余弦定理可得,化簡整理得,即,解得,所以,故答案是.點睛:該題考查的是有關解三角形的問題,在解題的過程中,注意分析要求對應角的正切值,需要求誰,而題中所給的條件與對應的結果之間有什么樣的連線,設出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應的等量關系,求得最后的結果.15.161【解析】

由題意可知出院人數構成一個首項為1,公比為2的等比數列,由此可求結果.【詳解】某醫院一次性收治患者127人.第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.且從第16天開始,每天出院的人數是前一天出院人數的2倍,從第15天開始,每天出院人數構成以1為首項,2為公比的等比數列,則第19天治愈出院患者的人數為,,解得,第天該醫院本次收治的所有患者能全部治愈出院.故答案為:16,1.【點睛】本題主要考查了等比數列在實際問題中的應用,考查等比數列的性質等基礎知識,考查推理能力與計算能力,屬于中檔題.16.【解析】

根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數在函數中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)首先求得導函數,然后結合導函數的解析式分類討論函數的單調性即可;(Ⅱ)將原問題進行等價轉化為,,恒成立,然后構造新函數,結合函數的性質確定實數的取值范圍即可.【詳解】解:(Ⅰ)當時,,當時,在上恒成立,函數在上單調遞減;當時,由得:;由得:.∴當時,函數的單調遞減區間是,無單調遞增區間:當時,函數的單調遞減區間是,函數的單調遞增區間是.(Ⅱ)對任意的和,恒成立等價于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區間上單調遞減,在區間上單調遞增,∴當時,,即又∵,∴實數的取值范圍是:.【點睛】本題主要考查導函數研究函數的單調性和恒成立問題,考查分類討論的數學思想,等價轉化的數學思想等知識,屬于中等題.18.(1)見解析(2)見解析【解析】

(1)連結OE,證明VA∥OE得到答案.(2)證明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到證明.【詳解】(1)連結OE.因為底面ABCD是菱形,所以O為AC的中點,又因為E是棱VC的中點,所以VA∥OE,又因為OE?平面BDE,VA?平面BDE,所以VA∥平面BDE;(2)因為VO⊥平面ABCD,又BD?平面ABCD,所以VO⊥BD,因為底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC?平面VAC,所以BD⊥平面VAC.又因為BD?平面BDE,所以平面VAC⊥平面BDE.【點睛】本題考查了線面平行,面面垂直,意在考查學生的推斷能力和空間想象能力.19.(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】

(1)求出的定義域,導函數,對參數、分類討論得到答案.(2)設函數,求導說明函數的單調性,求出函數的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域為,,當,時,,則在上單調遞增;當,時,令,得,令,得,則在上單調遞減,在上單調遞增;當,時,,則在上單調遞減;當,時,令,得,令,得,則在上單調遞增,在上單調遞減;(2)證明:設函數,則.因為,所以,,則,從而在上單調遞減,所以,即.(3)證明:當時,.由(1)知,,所以,即.當時,,,則,即,又,所以,即.【點睛】本題考查利用導數研究含參函數的單調性,利用導數證明不等式,屬于難題.20.(1)乙同學正確(2)分布列見解析,【解析】

(1)由已知可得甲不正確,求出樣本中心點代入驗證,即可得出結論;(2)根據(1)中得到的回歸方程,求出估值,得到“理想數據”的個數,確定“理想數據”的個數的可能值,并求出概率,得到分布列,即可求解.【詳解】(1)已知變量具有線性負相關關系,故甲不正確,,代入兩個回歸方程,驗證乙同學正確,故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論