




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西梧州市2025屆聯盟“測試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:,,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為()A. B. C. D.2.已知函數,將函數的圖象向左平移個單位長度后,所得到的圖象關于軸對稱,則的最小值是()A. B. C. D.3.已知函數,若函數的圖象恒在軸的上方,則實數的取值范圍為()A. B. C. D.4.某調查機構對全國互聯網行業進行調查統計,得到整個互聯網行業從業者年齡分布餅狀圖,90后從事互聯網行業崗位分布條形圖,則下列結論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯網行業從業人員中90后占一半以上B.互聯網行業中從事技術崗位的人數超過總人數的C.互聯網行業中從事運營崗位的人數90后比80前多D.互聯網行業中從事技術崗位的人數90后比80后多5.公比為2的等比數列中存在兩項,,滿足,則的最小值為()A. B. C. D.6.當輸入的實數時,執行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.7.若集合,,則()A. B. C. D.8.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數據在上的頻率為,則估計樣本在、內的數據個數共有()A. B. C. D.9.已知為虛數單位,若復數,則A. B.C. D.10.已知函,,則的最小值為()A. B.1 C.0 D.11.函數的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位12.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發,需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.14.已知,復數且(為虛數單位),則__________,_________.15.的三個內角A,B,C所對應的邊分別為a,b,c,已知,則________.16.已知函數,若函數有個不同的零點,則的取值范圍是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.18.(12分)如圖,在四棱錐中,底面是矩形,是的中點,平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.19.(12分)在平面直角坐標系中,橢圓:的右焦點為(,為常數),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點.⑴求橢圓的標準方程;⑵若時,,求實數;⑶試問的值是否與的大小無關,并證明你的結論.20.(12分)已知函數,直線是曲線在處的切線.(1)求證:無論實數取何值,直線恒過定點,并求出該定點的坐標;(2)若直線經過點,試判斷函數的零點個數并證明.21.(12分)心形線是由一個圓上的一個定點,當該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標原點的直角坐標系中.已知曲線的參數方程為(為參數).(1)求曲線的極坐標方程;(2)若曲線與相交于、、三點,求線段的長.22.(10分)已知數列滿足,,,且.(1)求證:數列為等比數列,并求出數列的通項公式;(2)設,求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由|AF2|=3|BF2|,可得.設直線l的方程x=my+,m>0,設,,即y1=﹣3y2①,聯立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F1,F2為左、右焦點,則F2(,0),設直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯立①②得,聯立①③得,,即:,,解得:,直線的斜率為,故選D.【點睛】本題考查直線與雙曲線的位置關系,考查韋達定理的運用,考查向量知識,屬于中檔題.2.A【解析】
化簡為,求出它的圖象向左平移個單位長度后的圖象的函數表達式,利用所得到的圖象關于軸對稱列方程即可求得,問題得解。【詳解】函數可化為:,將函數的圖象向左平移個單位長度后,得到函數的圖象,又所得到的圖象關于軸對稱,所以,解得:,即:,又,所以.故選:A.【點睛】本題主要考查了兩角和的正弦公式及三角函數圖象的平移、性質等知識,考查轉化能力,屬于中檔題。3.B【解析】
函數的圖象恒在軸的上方,在上恒成立.即,即函數的圖象在直線上方,先求出兩者相切時的值,然后根據變化時,函數的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠在的上方,設與的切點,則,解得,易知越小,圖象越靠上,所以.故選:B.【點睛】本題考查函數圖象與不等式恒成立的關系,考查轉化與化歸思想,首先函數圖象轉化為不等式恒成立,然后不等式恒成立再轉化為函數圖象,最后由極限位置直線與函數圖象相切得出參數的值,然后得出參數范圍.4.D【解析】
根據兩個圖形的數據進行觀察比較,即可判斷各選項的真假.【詳解】在A中,由整個互聯網行業從業者年齡分別餅狀圖得到互聯網行業從業人員中90后占56%,所以是正確的;在B中,由整個互聯網行業從業者年齡分別餅狀圖,90后從事互聯網行業崗位分布條形圖得到:,互聯網行業從業技術崗位的人數超過總人數的,所以是正確的;在C中,由整個互聯網行業從業者年齡分別餅狀圖,90后從事互聯網行業崗位分別條形圖得到:,互聯網行業從事運營崗位的人數90后比80后多,所以是正確的;在D中,互聯網行業中從事技術崗位的人數90后所占比例為,所以不能判斷互聯網行業中從事技術崗位的人數90后比80后多.故選:D.【點睛】本題主要考查了命題的真假判定,以及統計圖表中餅狀圖和條形圖的性質等基礎知識的應用,著重考查了推理與運算能力,屬于基礎題.5.D【解析】
根據已知條件和等比數列的通項公式,求出關系,即可求解.【詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【點睛】本題考查等比數列通項公式,注意為正整數,如用基本不等式要注意能否取到等號,屬于基礎題.6.A【解析】
根據循環結構的運行,直至不滿足條件退出循環體,求出的范圍,利用幾何概型概率公式,即可求出結論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環結構輸出結果、幾何概型的概率,模擬程序運行是解題的關鍵,屬于基礎題.7.B【解析】
根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.8.B【解析】
計算出樣本在的數據個數,再減去樣本在的數據個數即可得出結果.【詳解】由題意可知,樣本在的數據個數為,樣本在的數據個數為,因此,樣本在、內的數據個數為.故選:B.【點睛】本題考查利用頻數分布表計算頻數,要理解頻數、樣本容量與頻率三者之間的關系,考查計算能力,屬于基礎題.9.B【解析】
因為,所以,故選B.10.B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當,即時,.故選:B.【點睛】本題考查整體換元法求正弦型函數的最值,涉及到二倍角公式的應用,是一道中檔題.11.C【解析】
根據正弦型函數的圖象得到,結合圖像變換知識得到答案.【詳解】由圖象知:,∴.又時函數值最大,所以.又,∴,從而,,只需將的圖象向左平移個單位即可得到的圖象,故選C.【點睛】已知函數的圖象求解析式(1).(2)由函數的周期求(3)利用“五點法”中相對應的特殊點求,一般用最高點或最低點求.12.C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內容,考查了學生的空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設,由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當雙曲線的漸近線與圓相切時,取得最大值,此時,解得.14.【解析】∵復數且∴∴∴∴,故答案為,15.【解析】
利用正弦定理邊化角可得,從而可得,進而求解.【詳解】由,由正弦定理可得,即,整理可得,又因為,所以,因為,所以,故答案為:【點睛】本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎題.16.【解析】
作出函數的圖象及直線,如下圖所示,因為函數有個不同的零點,所以由圖象可知,,,所以.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)的極坐標方程為,的直角坐標方程為(2)【解析】
(1)先把曲線的參數方程消參后,轉化為普通方程,再利用求得極坐標方程.將,化為,再利用求得曲線的普通方程.(2)設直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點睛】本題考查極坐標方程與直角坐標方程、參數方程與普通方程的轉化、極坐標的幾何意義,還考查推理論證能力以及數形結合思想,屬于中檔題.18.(1).(2).【解析】分析:(1)直接建立空間直角坐標系,然后求出面的法向量和已知線的向量,再結合向量的夾角公式求解即可;(2)先分別得出兩個面的法向量,然后根據向量交角公式求解即可.詳解:()∵是矩形,∴,又∵平面,∴,,即,,兩兩垂直,∴以為原點,,,分別為軸,軸,軸建立如圖空間直角坐標系,由,,得,,,,,,則,,,設平面的一個法向量為,則,即,令,得,,∴,∴,故與平面所成角的正弦值為.()由()可得,設平面的一個法向量為,則,即,令,得,,∴,∴,故二面角的余弦值為.點睛:考查空間立體幾何的線面角,二面角問題,一般直接建立坐標系,結合向量夾角公式求解即可,但要注意坐標的正確性,坐標錯則結果必錯,務必細心,屬于中檔題.19.(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數法可得,橢圓方程為;(2)我們要知道=的條件應用,在于直線交橢圓兩交點M,N的橫坐標為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時,由(2)得;另一方面,當斜率存在即時,可設直線的斜率為,得直線MN:,聯立直線與橢圓方程,利用韋達定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關試題解析:(1),得:,橢圓方程為(2)當時,,得:,于是當=時,,于是,得到(3)①當=時,由(2)知②當時,設直線的斜率為,,則直線MN:聯立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無關考點:(1)待定系數求橢圓方程;(2)橢圓簡單的幾何性質;(3)直線與圓錐曲線20.(1)見解析,(2)函數存在唯一零點.【解析】
(1)首先求出導函數,利用導數的幾何意義求出處的切線斜率,利用點斜式即可求出切線方程,根據方程即可求出定點.(2)由(1)求出函數,令方程可轉化為記,利用導數判斷函數在上單調遞增,根據,由零點存在性定理即可求出零點個數.【詳解】所以直線方程為即,恒過點將代入直線方程,得考慮方程即,等價于記,則于是函數在上單調遞增,又所以函數在區間上存在唯一零點,即函數存在唯一零點.【點睛】本題考查了導數的幾何意義、直線過定點、利用導數研究函數的單調性、零點存在性定理,屬于難題.21.(1)();(2).【解析】
(1)化簡得到直線方程為,再利用極坐標公式計算得到答案.(2)聯立方程計算得到,,計算得到答案.【詳解】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3878-2020固廢燒結非承重自保溫砌塊(磚)應用技術規程
- DB32/T 3796-2020社區“家門口”服務工作規范
- DB32/T 3761.52-2022新型冠狀病毒肺炎疫情防控技術規范第52部分:方艙醫院
- DB31/T 669-2012固體廢棄物水上集裝化運輸通用要求
- DB31/T 1305-2021未成年人家庭監護能力評估指南
- DB31/T 1223-2020一次性食品安全封簽管理技術規范
- DB31/T 1153-2019醫療機構卓越績效評價準則
- 2024年特種加工機床資金籌措計劃書代可行性研究報告
- 2024年生物醫用陶瓷材料項目資金申請報告代可行性研究報告
- 2025年Web考試復習技巧試題及答案
- 吉林省長春市2024年中考語文真題試卷【附真題答案】
- DZ/T 0462.3-2023 礦產資源“三率”指標要求 第3部分:鐵、錳、鉻、釩、鈦(正式版)
- 梧州喜得寶礦業有限公司廣西梧州市金山頂金銀礦礦山地質環境保護與土地復墾方案
- 2024年職業衛生技術人員評價方向考試題庫附答案
- 安全管理之肉制品安全及防控措施
- 綠色算力基礎設施的能源與算力協同優化
- 中小學學生規范漢字書寫比賽硬筆格式
- 商品房買賣合同(示范文本)GF-2000-0171
- 手機制造行業未來五至十年行業分析
- 2024版社工(初級)《社會工作實務(初級)》考試題庫(含答案)
- 腰痛中醫診療規范診療指南2023版
評論
0/150
提交評論