




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆內蒙古烏蘭察布集寧區高三一診小練習二數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列是公比為的等比數列,且,,成等差數列,則公比的值為(
)A. B. C.或 D.或2.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.63.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.4.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院校科研方陣.他們是由軍事科學院、國防大學、國防科技大學聯合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么()A.國防大學,研究生 B.國防大學,博士C.軍事科學院,學士 D.國防科技大學,研究生5.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-16.設是定義域為的偶函數,且在單調遞增,,則()A. B.C. D.7.在等差數列中,,,若(),則數列的最大值是()A. B.C.1 D.38.設集合,,則().A. B.C. D.9.執行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.10.復數滿足,則()A. B. C. D.11.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數是()A.12 B.16 C.20 D.812.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數,那么a+b的值是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據如圖所示的偽代碼,若輸入的的值為2,則輸出的的值為____________.14.某校開展“我身邊的榜樣”評選活動,現對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票.這3名候選人的得票數(不考慮是否有效)分別為總票數的88%,75%,46%,則本次投票的有效率(有效票數與總票數的比值)最高可能為百分之________.“我身邊的榜樣”評選選票候選人符號注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個數不超過2時才為有效票.甲乙丙15.若直線與直線交于點,則長度的最大值為____.16.已知,為正實數,且,則的最小值為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若養殖場每個月生豬的死亡率不超過,則該養殖場考核為合格,該養殖場在2019年1月到8月養殖生豬的相關數據如下表所示:月份1月2月3月4月5月6月7月8月月養殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數/只293749537798126145(1)從該養殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據1月到8月的數據,求出月利潤y(十萬元)關于月養殖量x(千只)的線性回歸方程(精確到0.001).(3)預計在今后的養殖中,月利潤與月養殖量仍然服從(2)中的關系,若9月份的養殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數據:.18.(12分)追求人類與生存環境的和諧發展是中國特色社會主義生態文明的價值取向.為了改善空氣質量,某城市環保局隨機抽取了一年內100天的空氣質量指數(AQI)的檢測數據,結果統計如表:AQI空氣質量優良輕度污染中度污染重度污染重度污染天數61418272510(1)從空氣質量指數屬于[0,50],(50,100]的天數中任取3天,求這3天中空氣質量至少有2天為優的概率;(2)已知某企業每天因空氣質量造成的經濟損失y(單位:元)與空氣質量指數x的關系式為,假設該企業所在地7月與8月每天空氣質量為優、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質量對應的概率以表中100天的空氣質量的頻率代替.(i)記該企業9月每天因空氣質量造成的經濟損失為X元,求X的分布列;(ii)試問該企業7月、8月、9月這三個月因空氣質量造成的經濟損失總額的數學期望是否會超過2.88萬元?說明你的理由.19.(12分)如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點,滿足,求二面角的余弦值.20.(12分)在平面直角坐標系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當線段AB的長度最小時,求s的值.21.(12分)某市調硏機構對該市工薪階層對“樓市限購令”態度進行調查,抽調了50名市民,他們月收入頻數分布表和對“樓市限購令”贊成人數如下表:月收入(單位:百元)頻數51055頻率0.10.20.10.1贊成人數4812521(1)若所抽調的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調查者中隨機選取2人進行追蹤調查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數學期望.(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據表格數據,判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結果.22.(10分)已知函數的圖象向左平移后與函數圖象重合.(1)求和的值;(2)若函數,求的單調遞增區間及圖象的對稱軸方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由成等差數列得,利用等比數列的通項公式展開即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點睛】本題考查等差等比數列的綜合,利用等差數列的性質建立方程求q是解題的關鍵,對于等比數列的通項公式也要熟練.2、A【解析】
由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.3、B【解析】
直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.4、C【解析】
根據①③可判斷丙的院校;由②和⑤可判斷丙的學位.【詳解】由題意①甲不是軍事科學院的,③乙不是軍事科學院的;則丙來自軍事科學院;由②來自軍事科學院的不是博士,則丙不是博士;由⑤國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.【點睛】本題考查了合情推理的簡單應用,由條件的相互牽制判斷符合要求的情況,屬于基礎題.5、D【解析】
利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.6、C【解析】
根據偶函數的性質,比較即可.【詳解】解:顯然,所以是定義域為的偶函數,且在單調遞增,所以故選:C【點睛】本題考查對數的運算及偶函數的性質,是基礎題.7、D【解析】
在等差數列中,利用已知可求得通項公式,進而,借助函數的的單調性可知,當時,取最大即可求得結果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數,在時,單調遞減,且;在時,單調遞減,且.所以數列的最大值是,且,所以數列的最大值是3.故選:D.【點睛】本題考查等差數列的通項公式,考查數列與函數的關系,借助函數單調性研究數列最值問題,難度較易.8、D【解析】
根據題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,9、C【解析】
根據程序框圖寫出幾次循環的結果,直到輸出結果是8時.【詳解】第一次循環:第二次循環:第三次循環:第四次循環:第五次循環:第六次循環:第七次循環:第八次循環:所以框圖中①處填時,滿足輸出的值為8.故選:C【點睛】此題考查算法程序框圖,根據循環條件依次寫出每次循環結果即可解決,屬于簡單題目.10、C【解析】
利用復數模與除法運算即可得到結果.【詳解】解:,故選:C【點睛】本題考查復數除法運算,考查復數的模,考查計算能力,屬于基礎題.11、A【解析】
先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎題.12、B【解析】
依照偶函數的定義,對定義域內的任意實數,f(﹣x)=f(x),且定義域關于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據偶函數的定義域關于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數,得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點睛】本題考查偶函數的定義,對定義域內的任意實數,f(﹣x)=f(x);奇函數和偶函數的定義域必然關于原點對稱,定義域區間兩個端點互為相反數.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
滿足條件執行,否則執行.【詳解】本題實質是求分段函數在處的函數值,當時,.故答案為:1【點睛】本題考查條件語句的應用,此類題要做到讀懂算法語句,本題是一道容易題.14、91【解析】
設共有選票張,且票對應張數為,由此可構造不等式組化簡得到,由投票有效率越高越小,可知,由此計算可得投票有效率.【詳解】不妨設共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數與總票數的比值)最高可能為.故答案為:.【點睛】本題考查線性規劃的實際應用問題,關鍵是能夠根據已知條件構造出變量所滿足的關系式.15、【解析】
根據題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作圖如下:結合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標公式可得,所以線段的最大值為.故答案為:【點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關系;考查數形結合思想和運算求解能力;根據圓的定義得到交點在以為直徑的圓上是求解本題的關鍵;屬于中檔題.16、【解析】
由,為正實數,且,可知,于是,可得,再利用基本不等式即可得出結果.【詳解】解:,為正實數,且,可知,,.當且僅當時取等號.的最小值為.故答案為:.【點睛】本題考查了基本不等式的性質應用,恰當變形是解題的關鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)利潤約為111.2萬元.【解析】
(1)首先列出基本事件,然后根據古典概型求出恰好兩個月合格的概率;(2)首先求出利潤y和養殖量x的平均值,然后根據公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;(3)根據線性回歸方程代入9月份的數據即可求出9月利潤.【詳解】(1)2月到6月中,合格的月份為2,3,4月份,則5個月份任意選取3個月份的基本事件有,,,,,,,,,,共計10個,故恰好有兩個月考核合格的概率為;(2),,,,故;(3)當千只,(十萬元)(萬元),故9月份的利潤約為111.2萬元.【點睛】本題主要考查了古典概型,線性回歸方程的求解和使用,屬于基礎題.18、(1);(2)(i)詳見解析;(ii)會超過;詳見解析【解析】
(1)利用組合進行計算以及概率表示,可得結果.(2)(i)寫出X所有可能取值,并計算相對應的概率,列出表格可得結果.(ii)由(i)的條件結合7月與8月空氣質量所對應的概率,可得7月與8月經濟損失的期望和,最后7月、8月、9月經濟損失總額的數學期望與2.88萬元比較,可得結果.【詳解】(1)設ξ為選取的3天中空氣質量為優的天數,則P(ξ=2),P(ξ=3),則這3天中空氣質量至少有2天為優的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業9月的經濟損失的數學期望為30E(X),即30E(X)=9060元,設7月、8月每天因空氣質量造成的經濟損失為Y元,可得:,,,E(Y)=02201480320(元),所以該企業7月、8月這兩個月因空氣質量造成經濟損失總額的數學期望為320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月這三個月因空氣質量造成經濟損失總額的數學期望會超過2.88萬元.【點睛】本題考查概率中的分布列以及數學期望,屬基礎題。19、(1)證明見解析(2)(3)【解析】
(1)根據題意以為坐標原點,建立空間直角坐標系,寫出各個點的坐標,并表示出,由空間向量數量積運算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點在棱上,設,再由,結合,由空間向量垂直的坐標關系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數量積的運算求得兩個平面夾角的余弦值,再根據二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標原點,建立如圖所示的空間直角坐標系,∵,,點為棱的中點.∴,,,,,,.(2),設平面的法向量為.則,代入可得,令解得,即,設直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點在棱上,設,故,由,得,解得,即,設平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿足,由圖可知,二面角為銳二面角,故二面角的余弦值為.【點睛】本題考查了空間向量的綜合應用,由空間向量證明線線垂直,求直線與平面夾角及平面與平面形成的二面角大小,計算量較大,屬于中檔題.20、(1),(2).【解析】
根據題意設,可得PF的方程,根據距離即可求出;點Q處的切線的斜率存在,由對稱性不妨設,根據導數的幾何意義和斜率公式,求,并構造函數,利用導數求出函數的最值.【詳解】因為拋物線C的方程為,所以F的坐標為,設,因為圓M與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點,則直線PF的方程為,即,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業線上培訓合伙協議書
- 個人土地流轉意向協議書
- 揚州機電工程監理協議書
- 民營企業綠色發展協議書
- 2025年贈與合同法律特征與效力解析
- 天津終止勞動合同范本
- 拓展公司員工聘用協議書
- 交通事故三責賠償協議書
- 石家莊郵電職業技術學院《自動控制系統設計與實踐》2023-2024學年第二學期期末試卷
- 上海外國語大學賢達經濟人文學院《品牌傳播龐鐵明》2023-2024學年第二學期期末試卷
- 2025年商法知識競賽考試試卷及答案
- 2025屆廣東省佛山市順德區龍江鎮八下物理期末統考試題含解析
- 2025年山東省臨沂市平邑縣中考一模語文試題(含答案)
- 2025年電子信息工程專業考試試題及答案
- 【威海】2025年山東省威海技師學院公開招聘工作人員29人筆試歷年典型考題及考點剖析附帶答案詳解
- 2025年第六屆全國國家版圖知識競賽題庫及答案
- 機械租賃投標服務方案
- 2025年烘焙師職業資格考試真題卷:烘焙師職業競賽與評價試題
- 2025年北京市朝陽區九年級初三一模英語試卷(含答案)
- GB 7718-2025食品安全國家標準預包裝食品標簽通則
- Unit1-Unit2重點短語(背誦版+默寫版)外研版英語新七年級下冊
評論
0/150
提交評論