




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省煤炭建設公司第一中學2025年高三下學期精英聯賽數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設等差數列的前項和為,若,則()A.23 B.25 C.28 D.292.已知復數z滿足,則z的虛部為()A. B.i C.–1 D.13.若集合,,則()A. B. C. D.4.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.25.的展開式中的系數是-10,則實數()A.2 B.1 C.-1 D.-26.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標原點),則雙曲線的離心率為()A. B. C. D.7.函數f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數的圖象向右平移個單位后得到的函數圖象關于直線x=對稱,則函數f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)8.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.9.已知函數的值域為,函數,則的圖象的對稱中心為()A. B.C. D.10.已知展開式的二項式系數和與展開式中常數項相等,則項系數為()A.10 B.32 C.40 D.8011.已知是偶函數,在上單調遞減,,則的解集是A. B.C. D.12.在原點附近的部分圖象大概是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標函數14.高三(1)班共有56人,學號依次為1,2,3,…,56,現用系統抽樣的辦法抽取一個容量為4的樣本,已知學號為6,34,48的同學在樣本中,那么還有一個同學的學號應為.15.在平面直角坐標系中,若雙曲線經過點(3,4),則該雙曲線的準線方程為_____.16.若函數為偶函數,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)新高考,取消文理科,實行“”,成績由語文、數學、外語統一高考成績和自主選考的3門普通高中學業水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:年齡(歲)頻數515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據上表完成下面列聯表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數為,求的分布列以及.18.(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數,求實數k的取值范圍.19.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.20.(12分)已知四棱錐中,底面為等腰梯形,,,,丄底面.(1)證明:平面平面;(2)過的平面交于點,若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.21.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.22.(10分)已知數列滿足,且,,成等比數列.(1)求證:數列是等差數列,并求數列的通項公式;(2)記數列的前n項和為,,求數列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數列,又,公差為,,故選:D【點睛】考查等差數列的有關性質、運算求解能力和推理論證能力,是基礎題.2.C【解析】
利用復數的四則運算可得,即可得答案.【詳解】∵,∴,∴,∴復數的虛部為.故選:C.【點睛】本題考查復數的四則運算、虛部概念,考查運算求解能力,屬于基礎題.3.B【解析】
根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.4.C【解析】
由圖像用分段函數表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉化劃歸,數形結合,數學運算的能力,屬于中檔題.5.C【解析】
利用通項公式找到的系數,令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點睛】本題考查求二項展開式中特定項的系數,考查學生的運算求解能力,是一道容易題.6.C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質,考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關系應用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).7.D【解析】
由函數的周期求得,再由平移后的函數圖像關于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.【詳解】分析:由函數的周期求得,再由平移后的函數圖像關于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因為函數的最小正周期是,所以,解得,所以,將該函數的圖像向右平移個單位后,得到圖像所對應的函數解析式為,由此函數圖像關于直線對稱,得:,即,取,得,滿足,所以函數的解析式為,故選D.【點睛】本題主要考查了三角函數的圖象變換,以及函數的解析式的求解,其中解答中根據三角函數的圖象變換得到,再根據三角函數的性質求解是解答的關鍵,著重考查了推理與運算能力.8.D【解析】
根據三視圖知,該幾何體是一條垂直于底面的側棱為2的四棱錐,畫出圖形,結合圖形求出底面積代入體積公式求它的體積.【詳解】根據三視圖知,該幾何體是側棱底面的四棱錐,如圖所示:結合圖中數據知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.屬于中等題.9.B【解析】
由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數的圖像及性質,考查函數的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為010.D【解析】
根據二項式定理通項公式可得常數項,然后二項式系數和,可得,最后依據,可得結果.【詳解】由題可知:當時,常數項為又展開式的二項式系數和為由所以當時,所以項系數為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎題.11.D【解析】
先由是偶函數,得到關于直線對稱;進而得出單調性,再分別討論和,即可求出結果.【詳解】因為是偶函數,所以關于直線對稱;因此,由得;又在上單調遞減,則在上單調遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數的性質解對應不等式,熟記函數的奇偶性、對稱性、單調性等性質即可,屬于常考題型.12.A【解析】
分析函數的奇偶性,以及該函數在區間上的函數值符號,結合排除法可得出正確選項.【詳解】令,可得,即函數的定義域為,定義域關于原點對稱,,則函數為奇函數,排除C、D選項;當時,,,則,排除B選項.故選:A.【點睛】本題考查利用函數解析式選擇函數圖象,一般要分析函數的定義域、奇偶性、單調性、零點以及函數值符號,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.12【解析】
畫出約束條件的可行域,求出最優解,即可求解目標函數的最大值.【詳解】根據約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標函數y=3x-z,當y=3x-z過點(4,0)時,z有最大值,且最大值為12.故答案為:12.【點睛】本題考查線性規劃的簡單應用,屬于基礎題.14.20【解析】
根據系統抽樣的定義將56人按順序分成4組,每組14人,則1至14號為第一組,15至28號為第二組,29號至42號為第三組,43號至56號為第四組.而學號6,34,48分別是第一、三、四組的學號,所以還有一個同學應該是15+6-1=20號,故答案為20.15.【解析】
代入求解得,再求準線方程即可.【詳解】解:雙曲線經過點,,解得,即.又,故該雙曲線的準線方程為:.故答案為:.【點睛】本題主要考查了雙曲線的準線方程求解,屬于基礎題.16.【解析】
二次函數為偶函數說明一次項系數為0,求得參數,將代入表達式即可求解【詳解】由為偶函數,知其一次項的系數為0,所以,,所以,故答案為:-5【點睛】本題考查由奇偶性求解參數,求函數值,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯;(3)分布列見解析,.【解析】
(1)分別求出中青年、中老年對高考了解的頻數,即可求出概率;(2)根據數據列出列聯表,求出的觀測值,對照表格,即可得出結論;(3)年齡在的被調查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機變量分布列,根據期望公式即可求解.【詳解】(1)由題中數據可知,中青年對新高考了解的概率,中老年對新高考了解的概率.(2)列聯表如圖所示了解新高考不了解新高考總計中青年22830老年81220總計302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯.(3)年齡在的被調查者共5人,其中了解新高考的有2人,則抽取的3人中了解新高考的人數可能取值為0,1,2,則;;.所以的分布列為012.【點睛】本題考查概率、獨立性檢驗及隨機變量分布列和期望,考查計算求解能力,屬于基礎題.18.(1)(2)【解析】
(1)由不等式可得,討論與的關系,即可得到結果;(2)先解得不等式,由集合M中有且僅有一個整數,當時,則M中僅有的整數為;當時,則M中僅有的整數為,進而求解即可.【詳解】解:(1)因為,所以,當,即時,;當,即時,;當,即時,.(2)由得,當,即時,M中僅有的整數為,所以,即;當,即時,M中僅有的整數為,所以,即;綜上,滿足題意的k的范圍為【點睛】本題考查解一元二次不等式,考查由交集的結果求參數范圍,考查分類討論思想與運算能力.19.(1)見解析;(2)【解析】
(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點是的中點,連結,則∴平面∴∥,∴四邊形是矩形設,得:,又∵,∴,從而,過作于點,則∴是與平面所成角∴,∴與平面所成角的正弦值為考點:面面垂直的性質定理;線面平行的判定定理;線面垂直的性質定理;直線與平面所成的角.點評:本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的常考題型,較難.本題也可以用向量法來做:用向量法解題的關鍵是;首先正確的建立空間直角坐標系,正確求解平面的一個法向量.注意計算要仔細、認真.≌20.(1)見證明;(2)【解析】
(1)先證明等腰梯形中,然后證明,即可得到丄平面,從而可證明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如圖的空間坐標系,求出平面的法向量為,平面的法向量為,由可得到答案.【詳解】(1)證明:在等腰梯形,,易得在中,,則有,故,又平面,平面,,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/BHES 1-2022水質總硬度和鈣鎂的測定自動電位滴定法
- 2025年生態茶園觀光旅游項目鄉村旅游基礎設施優化建議書
- 早戀心理健康教育課
- 2025年環保產業園區產業集聚與協同發展中的產業協同機制創新研究報告
- 2025年電商平臺大數據驅動的用戶購買行為預測分析報告
- 糖皮質激素類藥
- 胎黃的中醫護理常規
- 中國高純硼酸項目創業計劃書
- 主要設計風格流派解析
- 移植病人圍術期護理
- 北京市2018年中考歷史真題試卷(含答案)
- (完整版)新概念英語第一冊單詞表(打印版)
- 露天煤礦智能集控員職業技能競賽理論考試題庫(含答案)
- 市政府綜合服務樓食堂及綜合服務托管投標方案(技術方案)【附圖】
- 北京市《配電室安全管理規范》(DB11T 527-2021)地方標準
- 工程物品采購清單-含公式
- 湖北武漢歷年中考語文現代文閱讀真題45篇(含答案)(2003-2023)
- 帶貨主播規章制度范本
- 數據真實性保證書
- 《內科胸腔鏡術》課件
- 2024年《體育基礎理論》考試題庫(含答案)
評論
0/150
提交評論