




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省文山州富寧縣一中2025屆高三四模數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若,則的最小值為()參考數據:A. B. C. D.2.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.3.如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.4.某設備使用年限x(年)與所支出的維修費用y(萬元)的統計數據分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年5.已知排球發球考試規則:每位考生最多可發球三次,若發球成功,則停止發球,否則一直發到次結束為止.某考生一次發球成功的概率為,發球次數為,若的數學期望,則的取值范圍為()A. B. C. D.6.若的展開式中的系數為150,則()A.20 B.15 C.10 D.257.執行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.8.復數在復平面內對應的點為則()A. B. C. D.9.設是虛數單位,,,則()A. B. C.1 D.210.已知復數,則對應的點在復平面內位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.函數的圖象大致是()A. B.C. D.12.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,所有的奇數次冪項的系數和為-64,則實數的值為__________.14.設,分別是定義在上的奇函數和偶函數,且,則_________15.若實數,滿足不等式組,則的最小值為______.16.已知,為正實數,且,則的最小值為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)證明:函數在上存在唯一的零點;(2)若函數在區間上的最小值為1,求的值.18.(12分)已知,求的最小值.19.(12分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大小;(2)求的值.20.(12分)已知函數.(1)討論的單調性;(2)函數,若對于,使得成立,求的取值范圍.21.(12分)在孟德爾遺傳理論中,稱遺傳性狀依賴的特定攜帶者為遺傳因子,遺傳因子總是成對出現例如,豌豆攜帶這樣一對遺傳因子:使之開紅花,使之開白花,兩個因子的相互組合可以構成三種不同的遺傳性狀:為開紅花,和一樣不加區分為開粉色花,為開白色花.生物在繁衍后代的過程中,后代的每一對遺傳因子都包含一個父系的遺傳因子和一個母系的遺傳因子,而因為生殖細胞是由分裂過程產生的,每一個上一代的遺傳因子以的概率傳給下一代,而且各代的遺傳過程都是相互獨立的.可以把第代的遺傳設想為第次實驗的結果,每一次實驗就如同拋一枚均勻的硬幣,比如對具有性狀的父系來說,如果拋出正面就選擇因子,如果拋出反面就選擇因子,概率都是,對母系也一樣.父系?母系各自隨機選擇得到的遺傳因子再配對形成子代的遺傳性狀.假設三種遺傳性狀,(或),在父系和母系中以同樣的比例:出現,則在隨機雜交實驗中,遺傳因子被選中的概率是,遺傳因子被選中的概率是.稱,分別為父系和母系中遺傳因子和的頻率,實際上是父系和母系中兩個遺傳因子的個數之比.基于以上常識回答以下問題:(1)如果植物的上一代父系?母系的遺傳性狀都是,后代遺傳性狀為,(或),的概率各是多少?(2)對某一植物,經過實驗觀察發現遺傳性狀具有重大缺陷,可人工剔除,從而使得父系和母系中僅有遺傳性狀為和(或)的個體,在進行第一代雜交實驗時,假設遺傳因子被選中的概率為,被選中的概率為,.求雜交所得子代的三種遺傳性狀,(或),所占的比例.(3)繼續對(2)中的植物進行雜交實驗,每次雜交前都需要剔除性狀為的個體假設得到的第代總體中3種遺傳性狀,(或),所占比例分別為.設第代遺傳因子和的頻率分別為和,已知有以下公式.證明是等差數列.(4)求的通項公式,如果這種剔除某種遺傳性狀的隨機雜交實驗長期進行下去,會有什么現象發生?22.(10分)已知函數,為實數,且.(Ⅰ)當時,求的單調區間和極值;(Ⅱ)求函數在區間,上的值域(其中為自然對數的底數).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
首先的單調性,由此判斷出,由求得的關系式.利用導數求得的最小值,由此求得的最小值.【詳解】由于函數,所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構造函數,.構造函數,,所以在區間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區間上遞增,在區間上遞減.而,所以在區間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點睛】本小題主要考查利用導數研究函數的最值,考查分段函數的圖像與性質,考查化歸與轉化的數學思想方法,屬于難題.2.C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.3.C【解析】
利用建系,假設長度,表示向量與,利用向量的夾角公式,可得結果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標系如圖設,所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎題.4.D【解析】
根據樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.5.A【解析】
根據題意,分別求出再根據離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發球分為兩種情況:三次都不成功、第三次成功6.C【解析】
通過二項式展開式的通項分析得到,即得解.【詳解】由已知得,故當時,,于是有,則.故選:C【點睛】本題主要考查二項式展開式的通項和系數問題,意在考查學生對這些知識的理解掌握水平.7.C【解析】
根據程序框圖寫出幾次循環的結果,直到輸出結果是8時.【詳解】第一次循環:第二次循環:第三次循環:第四次循環:第五次循環:第六次循環:第七次循環:第八次循環:所以框圖中①處填時,滿足輸出的值為8.故選:C【點睛】此題考查算法程序框圖,根據循環條件依次寫出每次循環結果即可解決,屬于簡單題目.8.B【解析】
求得復數,結合復數除法運算,求得的值.【詳解】易知,則.故選:B【點睛】本小題主要考查復數及其坐標的對應,考查復數的除法運算,屬于基礎題.9.C【解析】
由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.【點睛】本題考查了復數的運算,考查了復數相等的涵義.對于復數的運算類問題,易錯點是把當成進行運算.10.A【解析】
利用復數除法運算化簡,由此求得對應點所在象限.【詳解】依題意,對應點為,在第一象限.故選A.【點睛】本小題主要考查復數除法運算,考查復數對應點的坐標所在象限,屬于基礎題.11.B【解析】
根據函數表達式,把分母設為新函數,首先計算函數定義域,然后求導,根據導函數的正負判斷函數單調性,對應函數圖像得到答案.【詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.12.D【解析】
先求出集合N的補集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.【點睛】本題考查了韋恩圖表示集合,集合的交集和補集的運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.3或-1【解析】
設,分別令、,兩式相減即可得,即可得解.【詳解】設,令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【點睛】本題考查了二項式定理的應用,考查了運算能力,屬于中檔題.14.1【解析】
令,結合函數的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數分別是上的奇函數和偶函數,且,令,可得,所以.故答案為:1.【點睛】本題主要考查了函數奇偶性的應用,其中解答中熟記函數的奇偶性,合理賦值求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15.5【解析】
根據題意,畫出圖像,數形結合,將目標轉化為求動直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區域如圖陰影區域所示,令,則.分析知,當,時,取得最小值,且.【點睛】本題考查線性規劃問題,屬于基礎題16.【解析】
由,為正實數,且,可知,于是,可得,再利用基本不等式即可得出結果.【詳解】解:,為正實數,且,可知,,.當且僅當時取等號.的最小值為.故答案為:.【點睛】本題考查了基本不等式的性質應用,恰當變形是解題的關鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)【解析】
(1)求解出導函數,分析導函數的單調性,再結合零點的存在性定理說明在上存在唯一的零點即可;(2)根據導函數零點,判斷出的單調性,從而可確定,利用以及的單調性,可確定出之間的關系,從而的值可求.【詳解】(1)證明:∵,∴.∵在區間上單調遞增,在區間上單調遞減,∴函數在上單調遞增.又,令,,則在上單調遞減,,故.令,則所以函數在上存在唯一的零點.(2)解:由(1)可知存在唯一的,使得,即(*).函數在上單調遞增.∴當時,,單調遞減;當時,,單調遞增.∴.由(*)式得.∴,顯然是方程的解.又∵是單調遞減函數,方程有且僅有唯一的解,把代入(*)式,得,∴,即所求實數的值為.【點睛】本題考查函數與導數的綜合應用,其中涉及到判斷函數在給定區間上的零點個數以及根據函數的最值求解參數,難度較難.(1)判斷函數的零點個數時,可結合函數的單調性以及零點的存在性定理進行判斷;(2)函數的“隱零點”問題,可通過“設而不求”的思想進行分析.18.【解析】
討論和的情況,然后再分對稱軸和區間之間的關系,最后求出最小值【詳解】當時,,它在上是減函數故函數的最小值為當時,函數的圖象思維對稱軸方程為當時,,函數的最小值為當時,,函數的最小值為當時,,函數的最小值為綜上,【點睛】本題主要考查了二次函數在閉區間上的最值,二次函數的性質的應用,體現了分類討論的數學思想,屬于中檔題。19.(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點睛:本題主要考查正弦定理邊角互化及余弦定理的應用與特殊角的三角函數,屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數有關的問題時,還需要記住等特殊角的三角函數值,以便在解題中直接應用.20.(1)當時,在上增;當時,在上減,在上增(2)【解析】
(1)求出導函數,分類討論確定的正負,確定單調區間;(2)題意說明,利用導數求出的最小值,由(1)可得的最小值,從而得出結論.【詳解】解:(1)定義域為當時,即在上增;當時,即得得綜上所述,當時,在上增;當時,在上減,在上增(2)由題在上增由(1)當時,在上增,所以此時無最小值;當時,在上減,在上增,即,解得綜上【點睛】本題考查用導數求函數的單調區間,考查不等式恒成立問題,解題關鍵是掌握轉化與化歸思想,本題恒成立問題轉化為,求出兩函數的最小值后可得結論.21.(1),(或),的概率分別是,,.(2)(3)答案見解析(4)答案見解析【解析】
(1)利用相互獨立事件的概率乘法公式即可求解.(2)利用相互獨立事件的概率乘法公式即可求解.(3)由(2)知,求出、,利用等差數列的定義即可證出.(4)利用等差數列的通項公式可得,從而可得,再由,利用式子的特征可得越來越小,進而得出結論
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 青年發展面試題及答案
- 未來的商務英語職業市場的標準及技能測評題型試題及答案
- 醫學護理教學課件
- 注冊土木工程師考試復習資料的篩選與使用技巧分享試題及答案
- 火災化學的原因及預防試題及答案
- 解析2025年大學化學試題及答案
- 住宅消防維修采購合同范例
- 佛山用工合同范例
- 上海買房贈予合同范例
- 辦理環保證合同標準文本
- 《思想道德與法治》課件-第三章 繼承優良傳統 弘揚中國精神
- NB/T 11646-2024井工煤礦采空區自然發火監測預警技術規范
- 2025年勞動與社會保障專業考核試卷及答案
- 《危險化學品企業安全生產標準化規范》專業深度解讀與應用培訓指導材料之1:1范圍+3術語和定義(雷澤佳編制-2025A0)
- 上海上海閔行職業技術學院招聘60人筆試歷年參考題庫附帶答案詳解
- 《戲曲服飾圖案解析》課件
- 2025屆高三英語一輪復習“語法填空”題型說題課件
- 2025年上半年泰州經濟開發區專業招商人員和國企業工作人員招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 遼寧協作校2024-2025學年度高三第二次模擬考生物試題(含答案)
- 第18課《井岡翠竹》課件-2024-2025學年統編版語文七年級下冊
- 第16課《有為有不為》公開課一等獎創新教學設計
評論
0/150
提交評論