




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙市湖南師大附中2025屆高三下學期期末模擬卷(一)數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數z,則復數z的虛部為()A. B. C.i D.i2.已知函數,若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數的取值范圍為()A. B. C. D.3.《易經》包含著很多哲理,在信息學、天文學中都有廣泛的應用,《易經》的博大精深,對今天的幾何學和其它學科仍有深刻的影響.下圖就是易經中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.4.如圖,設為內一點,且,則與的面積之比為A. B.C. D.5.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.6.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.7.已知定義在R上的函數(m為實數)為偶函數,記,,則a,b,c的大小關系為()A. B. C. D.8.為虛數單位,則的虛部為()A. B. C. D.9.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.10.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數,黑點為陰數.若從這10個數中任取3個數,則這3個數中至少有2個陽數且能構成等差數列的概率為()A. B. C. D.11.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發,已知在的北偏西的方向上,在的北偏東的方向上,現在船往東開2百海里到達處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.12.函數的圖象為C,以下結論中正確的是()①圖象C關于直線對稱;②圖象C關于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③二、填空題:本題共4小題,每小題5分,共20分。13.設實數,滿足,則的最大值是______.14.某校高二(4)班統計全班同學中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學用餐平均用時為____分鐘.15.已知,,其中,為正的常數,且,則的值為_______.16.已知,滿足約束條件則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某校共有學生2000人,其中男生900人,女生1100人,為了調查該校學生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學生每周平均體育鍛煉時間(單位:小時).(1)應抽查男生與女生各多少人?(2)根據收集100人的樣本數據,得到學生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數據中有38名男學生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯表,并判斷是否有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87918.(12分)設函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若函數的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.19.(12分)已知函數.(1)討論的單調性并指出相應單調區間;(2)若,設是函數的兩個極值點,若,且恒成立,求實數k的取值范圍.20.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.21.(12分)設函數.(1)當時,求不等式的解集;(2)若不等式恒成立,求實數a的取值范圍.22.(10分)已知函數.(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
利用復數的運算法則、虛部的定義即可得出【詳解】,則復數z的虛部為.故選:B.【點睛】本題考查了復數的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎題.2.D【解析】
根據中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數求得的值域,由此求得的取值范圍.【詳解】根據條件可知,兩點的橫坐標互為相反數,不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數量積為零的坐標表示,考查化歸與轉化的數學思想方法,考查利用導數研究函數的最小值,考查分析與運算能力,屬于較難的題目.3.B【解析】
由圖利用三角形的面積公式可得正八邊形中每個三角形的面積,再計算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個等腰三角形,頂角為,設三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎題.4.A【解析】
作交于點,根據向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.5.B【解析】
由題意畫出圖形,設球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設球的半徑為,,,由,得.如圖:設三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點睛】本題考查三棱錐的外接球、三棱錐的側面積、體積,基本不等式等基礎知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數學轉化思想方法與數形結合的解題思想方法,是中檔題.6.B【解析】
設正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內,使得每條棱恰好為正方體的面對角線,根據正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內,設正方體的棱長為a,如圖所示,設正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點睛】本題考查球的內接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯系起來,考查計算能力,屬于中檔題.7.B【解析】
根據f(x)為偶函數便可求出m=0,從而f(x)=﹣1,根據此函數的奇偶性與單調性即可作出判斷.【詳解】解:∵f(x)為偶函數;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點睛】本題考查偶函數的定義,指數函數的單調性,對于偶函數比較函數值大小的方法就是將自變量的值變到區間[0,+∞)上,根據單調性去比較函數值大小.8.C【解析】
利用復數的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復數的運算以及復數的概念,注意復數的虛部為,不是,本題為基礎題,也是易錯題.9.D【解析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.10.C【解析】
先根據組合數計算出所有的情況數,再根據“3個數中至少有2個陽數且能構成等差數列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數有:種,3個數中至少有2個陽數且能構成等差數列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數較多時,可考慮用排列數、組合數去計算.11.B【解析】
先根據角度分析出的大小,然后根據角度關系得到的長度,再根據正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關鍵.12.B【解析】
根據三角函數的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數的對稱軸、對稱中心,考查三角函數圖象變換,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據目標函數的解析式形式,分析目標函數的幾何意義,然后判斷求出目標函數取得最優解的點的坐標,即可求解.【詳解】作出實數,滿足表示的平面區域,如圖所示:由可得,則表示直線在軸上的截距,截距越小,越大.由可得,此時最大為1,故答案為:1.【點睛】本題主要考查線性規劃知識的運用,考查學生的計算能力,考查數形結合的數學思想.14.7.5【解析】
分別求出所有人用時總和再除以總人數即可得到平均數.【詳解】故答案為:7.5【點睛】此題考查求平均數,關鍵在于準確計算出所有數據之和,易錯點在于概念辨析不清導致計算出錯.15.【解析】
把已知等式變形,展開兩角和與差的三角函數,結合已知求得值.【詳解】解:由,得,,即,,又,,解得:.為正的常數,.故答案為:.【點睛】本題考查兩角和與差的三角函數,考查數學轉化思想方法,屬于中檔題.16.1【解析】
先畫出約束條件的可行域,根據平移法判斷出最優點,代入目標函數的解析式,易可得到目標函數的最大值.【詳解】解:由約束條件得如圖所示的三角形區域,由于,則,要求的最大值,則求的截距的最小值,顯然當平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規劃求最值問題,我們常用幾何法求最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)男生人數為人,女生人數55人.(2)列聯表答案見解析,有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【解析】
(1)求出男女比例,按比例分配即可;(2)根據題意結合頻率分布表,先求出二聯表中數值,再結合公式計算,利用表格數據對比判斷即可【詳解】(1)因為男生人數:女生人數=900:1100=9:11,所以男生人數為,女生人數100﹣45=55人,(2)由頻率頻率直方圖可知學生每周平均體育鍛煉時間超過2小時的人數為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時間超過2小時的女生人數為37人,聯表如下:男生女生總計每周平均體育鍛煉時間不超過2小時71825每周平均體育鍛煉時間超過2小時383775總計4555100因為3.892>3.841,所以有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【點睛】本題考查分層抽樣,獨立性檢驗,熟記公式,正確計算是關鍵,屬于中檔題.18.(1)(2)【解析】
(Ⅰ)當時,不等式為.若,則,解得或,結合得或.若,則,不等式恒成立,結合得.綜上所述,不等式解集為.(Ⅱ)則的圖象與直線所圍成的四邊形為梯形,令,得,令,得,則梯形上底為,下底為11,高為..化簡得,解得,結合,得的取值范圍為.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.19.(1)答案見解析(2)【解析】
(1)先對函數進行求導得,對分成和兩種情況討論,從而得到相應的單調區間;(2)對函數求導得,從而有,,,三個方程中利用得到.將不等式的左邊轉化成關于的函數,再構造新函數利用導數研究函數的最小值,從而得到的取值范圍.【詳解】解:(1)由,,則,當時,則,故在上單調遞減;當時,令,所以在上單調遞減,在上單調遞增.綜上所述:當時,在上單調遞減;當時,在上單調遞減,在上單調遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設,則,∴在上單調遞減;當時,.∴,即所求的取值范圍為.【點睛】本題考查利用導數研究函數的單調性、最值,考查分類討論思想和數形結合思想,求解雙元問題的常用思路是:通過換元或消元,將雙元問題轉化為單元問題,然后利用導數研究單變量函數的性質.20.(1)證明見詳解;(2).【解析】
(1)取中點為,通過證明//,進而證明線面平行;(2)取中點為,以為坐標原點建立直角坐標系,求得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 跳蚤市場策劃書二手電器與家用電子產品的交易平臺
- 廠房不租合同協議書
- 送貨沒合同協議書怎么寫
- 教育培訓員工合同協議書
- 牛羊奇生蟲病綜合防治分析
- 電熱毯企業以數化推進轉型升級策略制定與實施手冊
- 直播帶貨項目可行性研究報告-2025年新基建重點
- 傳統媒體從業者如何在融合中實現三個轉型1
- 中國凹凸棒項目商業計劃書
- 2025年線上線下融合市場營銷戰略合同
- 護理科研選題與論文寫作
- 珠寶首飾加工工藝介紹課件
- 淘寶網-信息披露申請表
- 小微型客車租賃經營備案表
- 教育培訓機構辦學許可證申請書(樣本)
- 瓷磚業務員提成方案
- 2022年一級注冊計量師案例分析真題
- “三級”安全安全教育記錄卡
- 愛蓮說-王崧舟
- 小微企業信用評級標準模板
- 車輛安全設施設備定期檢查臺賬
評論
0/150
提交評論