2025屆湖南省兩校聯考高三下學期期末統一檢測試題數學試題_第1頁
2025屆湖南省兩校聯考高三下學期期末統一檢測試題數學試題_第2頁
2025屆湖南省兩校聯考高三下學期期末統一檢測試題數學試題_第3頁
2025屆湖南省兩校聯考高三下學期期末統一檢測試題數學試題_第4頁
2025屆湖南省兩校聯考高三下學期期末統一檢測試題數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖南省兩校聯考高三下學期期末統一檢測試題數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.2.已知函數,則函數的圖象大致為()A. B.C. D.3.定義在R上的偶函數f(x)滿足f(x+2)=f(x),當x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)4.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且5.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.6.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件7.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)8.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數為()A.1 B.2 C.3 D.09.已知函數在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、10.已知函數滿足:當時,,且對任意,都有,則()A.0 B.1 C.-1 D.11.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.12.如圖所示,三國時代數學家在《周脾算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內角為,若向弦圖內隨機拋擲200顆米粒(大小忽略不計,取),則落在小正方形(陰影)內的米粒數大約為()A.20 B.27 C.54 D.64二、填空題:本題共4小題,每小題5分,共20分。13.各項均為正數的等比數列中,為其前項和,若,且,則公比的值為_____.14.已知,在方向上的投影為,則與的夾角為_________.15.已知雙曲線(a>0,b>0)的兩個焦點為、,點P是第一象限內雙曲線上的點,且,tan∠PF2F1=﹣2,則雙曲線的離心率為_____.16.《九章算術》是中國古代的數學名著,其中《方田》一章給出了弧田面積的計算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角,,的對邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.18.(12分)已知數列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數列的前項和為,且,若對,恒成立,求正整數的值.19.(12分)如圖,四棱錐中,底面,,點在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.20.(12分)分別為的內角的對邊.已知.(1)若,求;(2)已知,當的面積取得最大值時,求的周長.21.(12分)已知函數,不等式的解集為.(1)求實數,的值;(2)若,,,求證:.22.(10分)已知函數,(其中,).(1)求函數的最小值.(2)若,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.2、A【解析】

用排除法,通過函數圖像的性質逐個選項進行判斷,找出不符合函數解析式的圖像,最后剩下即為此函數的圖像.【詳解】設,由于,排除B選項;由于,所以,排除C選項;由于當時,,排除D選項.故A選項正確.故選:A【點睛】本題考查了函數圖像的性質,屬于中檔題.3、B【解析】

根據函數的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數f(x)在定義域上的圖象,由此結合選項判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據周期為2依次平移,并結合f(x)是偶函數作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【點睛】本題考查函數性質的綜合運用,考查函數值的大小比較,考查數形結合思想,屬于中檔題.4、B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.5、D【解析】

根據雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.6、A【解析】

首先利用二倍角正切公式由,求出,再根據充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A【點睛】本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應用是解決本題的關鍵,屬于基礎題.7、C【解析】

利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.8、C【解析】

由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數.【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.9、A【解析】

設,利用導數和題設條件,得到,得出函數在R上單調遞增,得到,進而變形即可求解.【詳解】由題意,設,則,又由,所以,即函數在R上單調遞增,則,即,變形可得.故選:A.【點睛】本題主要考查了利用導數研究函數的單調性及其應用,以及利用單調性比較大小,其中解答中根據題意合理構造新函數,利用新函數的單調性求解是解答的關鍵,著重考查了構造思想,以及推理與計算能力,屬于中檔試題.10、C【解析】

由題意可知,代入函數表達式即可得解.【詳解】由可知函數是周期為4的函數,.故選:C.【點睛】本題考查了分段函數和函數周期的應用,屬于基礎題.11、D【解析】

根據三視圖知,該幾何體是一條垂直于底面的側棱為2的四棱錐,畫出圖形,結合圖形求出底面積代入體積公式求它的體積.【詳解】根據三視圖知,該幾何體是側棱底面的四棱錐,如圖所示:結合圖中數據知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.屬于中等題.12、B【解析】

設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內的米粒數大約為,利用概率模擬列方程即可求解。【詳解】設大正方體的邊長為,則小正方體的邊長為,設落在小正方形內的米粒數大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將已知由前n項和定義整理為,再由等比數列性質求得公比,最后由數列各項均為正數,舍根得解.【詳解】因為即又等比數列各項均為正數,故故答案為:【點睛】本題考查在等比數列中由前n項和關系求公比,屬于基礎題.14、【解析】

由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大小.【詳解】在方向上的投影為,即夾角為.故答案為:.【點睛】本題考查求向量的夾角,掌握向量投影的定義是解題關鍵.15、【解析】

根據正弦定理得,根據余弦定理得2PF1?PF2cos∠F1PF23,聯立方程得到,計算得到答案.【詳解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,②①②聯解,得,可得,∴雙曲線的,結合,得離心率.故答案為:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和轉化能力.16、612π﹣9【解析】

過作,交于,先求得圓心角的弧度數,然后解解三角形求得的長.利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長為4π,弧所在的圓的半徑為6,過作,交于,根據圓的幾何性質可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點睛】本小題主要考查弓形弦長和弓形面積的計算,考查中國古代數學文化,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據三角形面積公式和正弦定理可得答案;(2)根據兩角余弦公式可得,即可求出,再根據正弦定理可得,根據余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經檢驗符合題意,三角形的周長.(實際上可解得,符合三邊關系).【點睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導公式,考查正弦定理,余弦定理在解三角形中的綜合應用,考查了學生的運算能力,考查了轉化思想,屬于中檔題.18、(Ⅰ),;(Ⅱ)1【解析】

(Ⅰ)易得為等比數列,再利用前項和與通項的關系求解的通項公式即可.(Ⅱ)由題可知要求的最小值,再分析的正負即可得隨的增大而增大再判定可知即可.【詳解】(Ⅰ)因為,故是以為首項,2為公比的等比數列,故.又當時,,解得.當時,…①…②①-②有,即.當時也滿足.故為常數列,所以.即.故,(Ⅱ)因為對,恒成立.故只需求的最小值即可.設,則,又,又當時,時.當時,因為.故.綜上可知.故隨著的增大而增大,故,故【點睛】本題主要考查了根據數列的遞推公式求解通項公式的方法,同時也考查了根據數列的增減性判斷最值的問題,需要根據題意求解的通項,并根據二項式定理分析其正負,從而得到最小項.屬于難題.19、(1)證明見解析(2)【解析】

(1)要證明平面,只需證明,,即可求得答案;(2)先根據已知證明四邊形為矩形,以為原點,為軸,為軸,為軸,建立坐標系,求得平面的法向量為,平面的法向量,設二面角的平面角為,,即可求得答案.【詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點,為軸,為軸,為軸,建立坐標系,如圖:則:,,,,:,設平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設二面角的平面角為即二面角的正弦值為:.【點睛】本題主要考查了求證線面垂直和向量法求二面角,解題關鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計算能力,屬于中檔題.20、(1)(2)【解析】

(1)根據正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據,選擇,所以當的面積取得最大值時,最大,結合(1)中條件,即可求出最大時,對應的的值,再根據余弦定理求出邊,進而得到的周長.【詳解】(1)由,得,即.因為,所以.由,得.(2)因為,所以,當且僅當時,等號成立.因為的面積.所以當時,的面積取得最大值,此時,則,所以的周長為.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應用,意在考查學生的轉化能力和數學運算能力.21、(1),.(2)見解析【解析】

(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論