安徽省宿州市宿城第一中學2025年高三下學期第一次調研測試數學試題含解析_第1頁
安徽省宿州市宿城第一中學2025年高三下學期第一次調研測試數學試題含解析_第2頁
安徽省宿州市宿城第一中學2025年高三下學期第一次調研測試數學試題含解析_第3頁
安徽省宿州市宿城第一中學2025年高三下學期第一次調研測試數學試題含解析_第4頁
安徽省宿州市宿城第一中學2025年高三下學期第一次調研測試數學試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省宿州市宿城第一中學2025年高三下學期第一次調研測試數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-32.過拋物線C:y2=4x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.3.已知函數,若方程恰有兩個不同實根,則正數m的取值范圍為()A. B.C. D.4.已知集合,,則=()A. B. C. D.5.從某市的中學生中隨機調查了部分男生,獲得了他們的身高數據,整理得到如下頻率分布直方圖:根據頻率分布直方圖,可知這部分男生的身高的中位數的估計值為A. B.C. D.6.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區進行幫扶活動,每人只能去一個社區,每個社區至少一人.其中甲必須去社區,乙不去社區,則不同的安排方法種數為()A.8 B.7 C.6 D.57.已知向量,,設函數,則下列關于函數的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數8.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.9.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.10.已知集合,,則為()A. B. C. D.11.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.12.已知定點都在平面內,定點是內異于的動點,且,那么動點在平面內的軌跡是()A.圓,但要去掉兩個點 B.橢圓,但要去掉兩個點C.雙曲線,但要去掉兩個點 D.拋物線,但要去掉兩個點二、填空題:本題共4小題,每小題5分,共20分。13.已知盒中有2個紅球,2個黃球,且每種顏色的兩個球均按,編號,現從中摸出2個球(除顏色與編號外球沒有區別),則恰好同時包含字母,的概率為________.14.已知實數a,b,c滿足,則的最小值是______.15.(5分)函數的定義域是____________.16.已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則______________;四棱錐P-ABCD的體積為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點,若點滿足.(Ⅰ)求點的軌跡方程;(Ⅱ)過點的直線與(Ⅰ)中曲線相交于兩點,為坐標原點,求△面積的最大值及此時直線的方程.18.(12分)已知函數.(Ⅰ)求的值;(Ⅱ)若,且,求的值.19.(12分)已知{an}是一個公差大于0的等差數列,且滿足a3a5=45,a2+a6=1.(I)求{an}的通項公式;(Ⅱ)若數列{bn}滿足:…,求{bn}的前n項和.20.(12分)已知數列滿足:對一切成立.(1)求數列的通項公式;(2)求數列的前項和.21.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.22.(10分)在平面直角坐標系中,曲線的參數方程是(為參數),以原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標方程;(Ⅱ)已知直線與曲線交于,兩點,與軸交于點,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

設,,設:,聯立方程得到,計算得到答案.【詳解】設,,故.易知直線斜率不為,設:,聯立方程,得到,故,故.故選:.本題考查了拋物線中的向量的數量積,設直線為可以簡化運算,是解題的關鍵.2.C【解析】

聯立方程解得M(3,),根據MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.本題考查了直線和拋物線的位置關系,意在考查學生的計算能力和轉化能力.3.D【解析】

當時,函數周期為,畫出函數圖像,如圖所示,方程兩個不同實根,即函數和有圖像兩個交點,計算,,根據圖像得到答案.【詳解】當時,,故函數周期為,畫出函數圖像,如圖所示:方程,即,即函數和有兩個交點.,,故,,,,.根據圖像知:.故選:.本題考查了函數的零點問題,確定函數周期畫出函數圖像是解題的關鍵.4.C【解析】

計算,,再計算交集得到答案.【詳解】,,故.故選:.本題考查了交集運算,意在考查學生的計算能力.5.C【解析】

由題可得,解得,則,,所以這部分男生的身高的中位數的估計值為,故選C.6.B【解析】根據題意滿足條件的安排為:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.7.D【解析】

當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數.本題選擇D選項.8.A【解析】

由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A本題考查折線圖與柱形圖,屬于基礎題.9.C【解析】

作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.10.C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.11.B【解析】

由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題12.A【解析】

根據題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內異于的動點,所以的軌跡是圓,但要去掉兩個點A,B故選:A本題主要考查了線面垂直、線線垂直的判定,圓的性質,軌跡問題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據組合數得出所有情況數及兩個球顏色不相同的情況數,讓兩個球顏色不相同的情況數除以總情況數即為所求的概率.【詳解】從袋中任意地同時摸出兩個球共種情況,其中有種情況是兩個球顏色不相同;故其概率是故答案為:.本題主要考查了求事件概率,解題關鍵是掌握概率的基礎知識和組合數計算公式,考查了分析能力和計算能力,屬于基礎題.14.【解析】

先分離出,應用基本不等式轉化為關于c的二次函數,進而求出最小值.【詳解】解:若取最小值,則異號,,根據題意得:,又由,即有,則,即的最小值為,故答案為:本題考查了基本不等式以及二次函數配方求最值,屬于中檔題.15.【解析】

要使函數有意義,則,即,解得,故函數的定義域是.16.90°【解析】

易得平面PAD,P點在與BA垂直的圓面內運動,顯然,PA是圓的直徑時,PA最長;將四棱錐補形為長方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點在與BA垂直的圓面內運動,易知,當P、、A三點共線時,PA達到最長,此時,PA是圓的直徑,則;又,所以平面ABCD,此時可將四棱錐補形為長方體,其體對角線為,底面邊長為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).本題四棱錐外接球有關的問題,考查學生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)面積的最大值為,此時直線的方程為.【解析】

(1)根據橢圓的定義求解軌跡方程;(2)設出直線方程后,采用(表示原點到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:(Ⅰ)由定義法可得,點的軌跡為橢圓且,.因此橢圓的方程為.(Ⅱ)設直線的方程為與橢圓交于點,,聯立直線與橢圓的方程消去可得,即,.面積可表示為令,則,上式可化為,當且僅當,即時等號成立,因此面積的最大值為,此時直線的方程為.常見的利用定義法求解曲線的軌跡方程問題:(1)已知點,若點滿足且,則的軌跡是橢圓;(2)已知點,若點滿足且,則的軌跡是雙曲線.18.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)直接代入再由誘導公式計算可得;(Ⅱ)先得到,再根據利用兩角差的余弦公式計算可得.【詳解】解:(Ⅰ);(Ⅱ)因為所以,由得,又因為,故,所以,所以.本題考查了三角函數中的恒等變換應用,屬于中檔題.19.(I);(Ⅱ)【解析】

(Ⅰ)設等差數列的公差為,則依題設.由,可得.由,得,可得.所以.可得.(Ⅱ)設,則.即,可得,且.所以,可知.所以,所以數列是首項為4,公比為2的等比數列.所以前項和.考點:等差數列通項公式、用數列前項和求數列通項公式.20.(1);(2)【解析】

(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1)①,當時,,,當時,②,①②得:,,適合,故;(2),.本題考查法求數列的通項公式,考查裂項求和,是基礎題.21.(1)見解析(2)見解析【解析】

(1)取的中點D,連結,.根據線面平行的判定定理即得;(2)先證,,和都是平面內的直線且交于點,由(1)得,再結合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結,.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,,.又,平面,平面,平面.本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.22.(1)(x-1)2+y2=4,直線l的直角坐標方程為x-y-2=0;(2)3.【解析】

(1)消參得到曲線的普通方程,利用極坐標和直角坐標方程的互化公式求得直線的直角坐標方程;(2)先得到直線的參數方程,將直線的參數方程代入到圓的方程,得到關于的一元二次方程,由根與系數的關系、參數的幾何意義進行求解.【詳解】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論