




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省安慶二中2025屆高三1月階段性測試數學試題文試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列的首項,且,其中,,,下列敘述正確的是()A.若是等差數列,則一定有 B.若是等比數列,則一定有C.若不是等差數列,則一定有 D.若不是等比數列,則一定有2.函數(),當時,的值域為,則的范圍為()A. B. C. D.3.函數的定義域為()A.或 B.或C. D.4.已知雙曲線的焦距為,若的漸近線上存在點,使得經過點所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.5.集合,則集合的真子集的個數是A.1個 B.3個 C.4個 D.7個6.將函數的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.7.已知函數是定義在R上的奇函數,且滿足,當時,(其中e是自然對數的底數),若,則實數a的值為()A. B.3 C. D.8.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3 C. D.29.已知集合,,,則()A. B. C. D.10.記為等差數列的前項和.若,,則()A.5 B.3 C.-12 D.-1311.設全集,集合,.則集合等于()A. B. C. D.12.已知定義在R上的偶函數滿足,當時,,函數(),則函數與函數的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足:點在直線上,若使、、構成等比數列,則______14.已知點M是曲線y=2lnx+x2﹣3x上一動點,當曲線在M處的切線斜率取得最小值時,該切線的方程為_______.15.已知實數滿足,則的最大值為________.16.設、、、、是表面積為的球的球面上五點,四邊形為正方形,則四棱錐體積的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(,)滿足下列3個條件中的2個條件:①函數的周期為;②是函數的對稱軸;③且在區間上單調.(Ⅰ)請指出這二個條件,并求出函數的解析式;(Ⅱ)若,求函數的值域.18.(12分)設函數.(1)若,求實數的取值范圍;(2)證明:,恒成立.19.(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)若函數圖象的一條對稱軸方程為且,求的值.20.(12分)如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點,滿足,求二面角的余弦值.21.(12分)已知函數.(1)證明:當時,;(2)若函數只有一個零點,求正實數的值.22.(10分)某工廠生產某種電子產品,每件產品不合格的概率均為,現工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數越少;(ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據等差數列和等比數列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數列,但是此時不成立,故本說法不正確;C:當時,因此有常數,因此是等差數列,因此當不是等差數列時,一定有,故本說法正確;D:當時,若時,顯然數列是等比數列,故本說法不正確.故選:C【點睛】本題考查了等差數列和等比數列的定義,考查了推理論證能力,屬于基礎題.2、B【解析】
首先由,可得的范圍,結合函數的值域和正弦函數的圖像,可求的關于實數的不等式,解不等式即可求得范圍.【詳解】因為,所以,若值域為,所以只需,∴.故選:B【點睛】本題主要考查三角函數的值域,熟悉正弦函數的單調性和特殊角的三角函數值是解題的關鍵,側重考查數學抽象和數學運算的核心素養.3、A【解析】
根據偶次根式被開方數非負可得出關于的不等式,即可解得函數的定義域.【詳解】由題意可得,解得或.因此,函數的定義域為或.故選:A.【點睛】本題考查具體函數定義域的求解,考查計算能力,屬于基礎題.4、B【解析】
由可得;由過點所作的圓的兩條切線互相垂直可得,又焦點到雙曲線漸近線的距離為,則,進而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經過點所作的圓的兩條切線互相垂直,必有,而焦點到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質的應用.5、B【解析】
由題意,結合集合,求得集合,得到集合中元素的個數,即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數個數的求解,其中作出集合的運算,得到集合,再由真子集個數的公式作出計算是解答的關鍵,著重考查了推理與運算能力.6、B【解析】
首先根據函數的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結果.【詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【點睛】該題考查的是有關三角函數的周期與函數圖象平移之間的關系,屬于簡單題目.7、B【解析】
根據題意,求得函數周期,利用周期性和函數值,即可求得.【詳解】由已知可知,,所以函數是一個以4為周期的周期函數,所以,解得,故選:B.【點睛】本題考查函數周期的求解,涉及對數運算,屬綜合基礎題.8、D【解析】
根據拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸的交點為.根據拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線的定義,考查數形結合的數學思想方法,屬于基礎題.9、A【解析】
求得集合中函數的值域,由此求得,進而求得.【詳解】由,得,所以,所以.故選:A【點睛】本小題主要考查函數值域的求法,考查集合補集、交集的概念和運算,屬于基礎題.10、B【解析】
由題得,,解得,,計算可得.【詳解】,,,,解得,,.故選:B【點睛】本題主要考查了等差數列的通項公式,前項和公式,考查了學生運算求解能力.11、A【解析】
先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數不等式,是一道容易題.12、B【解析】
由函數的性質可得:的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,由函數圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數滿足,可得的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,函數的圖像與函數()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數的性質,考查了數形結合的思想,掌握函數的性質是解題的關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】
根據點在直線上可求得,由等比中項的定義可構造方程求得結果.【詳解】在上,,成等比數列,,即,解得:.故答案為:.【點睛】本題考查根據三項成等比數列求解參數值的問題,涉及到等比中項的應用,屬于基礎題.14、【解析】
先求導數可得切線斜率,利用基本不等式可得切點橫坐標,從而可得切線方程.【詳解】,,=1時有最小值1,此時M(1,﹣2),故切線方程為:,即.故答案為:.【點睛】本題主要考查導數的幾何意義,切點處的導數值等于切線的斜率是求解的關鍵,側重考查數學運算的核心素養.15、【解析】
作出不等式組所表示的平面區域,將目標函數看作點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,代入點A的坐標可得答案.【詳解】畫出二元一次不等式組所表示的平面區域,如下圖所示,由得點,目標函數表示點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,此時的最大值為.故答案為:.【點睛】本題考查求目標函數的最值,關鍵在于明確目標函數的幾何意義,屬于中檔題.16、【解析】
根據球的表面積求得球的半徑,設球心到四棱錐底面的距離為,求得四棱錐的表達式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設球心到四棱錐底面的距離為,棱錐的高為,底面邊長為,的體積,當且僅當時等號成立.故答案為:【點睛】本小題主要考查球的表面積有關計算,考查球的內接四棱錐體積的最值的求法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)只有①②成立,;(Ⅱ).【解析】
(Ⅰ)依次討論①②成立,①③成立,②③成立,計算得到只有①②成立,得到答案.(Ⅱ)得到,得到函數值域.【詳解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,則,,,若①③成立,則,,不合題意,若②③成立,則,,與③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由題意得,,所以函數的值域為.【點睛】本題考查了三角函數的周期,對稱軸,單調性,值域,表達式,意在考查學生對于三角函數知識的綜合應用.18、(1)(2)證明見解析【解析】
(1)將不等式化為,利用零點分段法,求得不等式的解集.(2)將要證明的不等式轉化為證,恒成立,由的最小值為,得到只要證,即證,利用絕對值不等式和基本不等式,證得上式成立.【詳解】(1)∵,∴,即當時,不等式化為,∴當時,不等式化為,此時無解當時,不等式化為,∴綜上,原不等式的解集為(2)要證,恒成立即證,恒成立∵的最小值為-2,∴只需證,即證又∴成立,∴原題得證【點睛】本題考查絕對值不等式的性質、解法,基本不等式等知識;考查推理論證能力、運算求解能力;考查化歸與轉化,分類與整合思想.19、(1)(2)【解析】
(1)由已知利用三角函數恒等變換的應用,正弦定理可求,即可求的值.(2)利用三角函數恒等變換的應用,可得,根據題意,得到,解得,得到函數的解析式,進而求得的值,利用三角函數恒等變換的應用可求的值.【詳解】(1)由題意,根據正弦定理,可得,又由,所以,可得,即,又因為,則,可得,∵,∴.(2)由(1)可得,所以函數的圖象的一條對稱軸方程為,∴,得,即,∴,又,∴,∴.【點睛】本題主要考查了三角函數恒等變換的應用,正弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.20、(1)證明見解析(2)(3)【解析】
(1)根據題意以為坐標原點,建立空間直角坐標系,寫出各個點的坐標,并表示出,由空間向量數量積運算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點在棱上,設,再由,結合,由空間向量垂直的坐標關系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數量積的運算求得兩個平面夾角的余弦值,再根據二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標原點,建立如圖所示的空間直角坐標系,∵,,點為棱的中點.∴,,,,,,.(2),設平面的法向量為.則,代入可得,令解得,即,設直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點在棱上,設,故,由,得,解得,即,設平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿足,由圖可知,二面角為銳二面角,故二面角的余弦值為.【點睛】本題考查了空間向量的綜合應用,由空間向量證明線線垂直,求直線與平面夾角及平面與平面形成的二面角大小,計算量較大,屬于中檔題.21、(1)證明見解析;(2).【解析】
(1)把轉化成,令,由題意得,即證明恒成立,通過導數求證即可(2)直接求導可得,,令,得或,故
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年化工廠事故應急預案演練計劃
- 高三班主任學科競賽組織工作計劃
- 醫療數據質量管理與安全保護計劃
- 建筑企業安全質量雙重培訓計劃
- 2025年公務員考試時事政治模考模擬試題【模擬題】附答案詳解
- 蘇少版四年級下冊美術教學資源計劃
- 物流中心安全保障年度應急演練計劃
- 2025年公共衛生中心感控培訓計劃
- 2025年公務員考試時事政治每日一練試卷含完整答案詳解【典優】
- 高新技術企業廠房使用權轉讓合同
- 專升本合同范本
- 眼科淚器病診療規范2023版
- 老年人體檢分析報告及改進措施
- SAG超級抗原 細胞免疫抗衰
- 2024年湘潭電化產投控股集團有限公司招聘筆試沖刺題(帶答案解析)
- GB/T 13077-2024鋁合金無縫氣瓶定期檢驗與評定
- SY-T 6966-2023 輸油氣管道工程安全儀表系統設計規范
- 杜邦十大安全管理理念課件
- 身份證知識課件
- GB/T 43780-2024制造裝備智能化通用技術要求
- 實驗10乙醇乙酸的主要性質
評論
0/150
提交評論