海南省瓊中縣達標名校2024屆中考沖刺卷數學試題含解析_第1頁
海南省瓊中縣達標名校2024屆中考沖刺卷數學試題含解析_第2頁
海南省瓊中縣達標名校2024屆中考沖刺卷數學試題含解析_第3頁
海南省瓊中縣達標名校2024屆中考沖刺卷數學試題含解析_第4頁
海南省瓊中縣達標名校2024屆中考沖刺卷數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

海南省瓊中縣達標名校2024屆中考沖刺卷數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.分式有意義,則x的取值范圍是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣72.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.83.一個幾何體的三視圖如圖所示,這個幾何體是()A.三菱柱 B.三棱錐 C.長方體 D.圓柱體4.如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°5.如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形6.某工廠計劃生產210個零件,由于采用新技術,實際每天生產零件的數量是原計劃的1.5倍,因此提前5天完成任務.設原計劃每天生產零件個,依題意列方程為()A. B.C. D.7.某車間20名工人日加工零件數如表所示:日加工零件數45678人數26543這些工人日加工零件數的眾數、中位數、平均數分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、68.某學習小組做“用頻率估計概率”的實驗時,統計了某一結果出現的頻率,繪制了如下折線統計圖,則符合這一結果的實驗最有可能的是()A.袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質地均勻的正六面體骰子,向上的面的點數是偶數C.先后兩次擲一枚質地均勻的硬幣,兩次都出現反面D.先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數之和是7或超過99.在2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數分別為:158,160,154,158,170,則由這組數據得到的結論錯誤的是()A.平均數為160 B.中位數為158 C.眾數為158 D.方差為20.310.下列性質中菱形不一定具有的性質是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形二、填空題(共7小題,每小題3分,滿分21分)11.如圖,△ABC的兩條高AD,BE相交于點F,請添加一個條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是_____.12.定義:在平面直角坐標系xOy中,把從點P出發沿縱或橫方向到達點至多拐一次彎的路徑長稱為P,Q的“實際距離”如圖,若,,則P,Q的“實際距離”為5,即或環保低碳的共享單車,正式成為市民出行喜歡的交通工具設A,B兩個小區的坐標分別為,,若點表示單車停放點,且滿足M到A,B的“實際距離”相等,則______.13.株洲市城區參加2018年初中畢業會考的人數約為10600人,則數10600用科學記數法表示為_____.14.已知,則______15.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B=______16.若關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數根,則m的值為______.17.反比例函數y=的圖像經過點(2,4),則k的值等于__________.三、解答題(共7小題,滿分69分)18.(10分)△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.如圖(1)當射線DN經過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.如圖(2),將∠MDN繞點D沿逆時針方向旋轉,DM,DN分別交線段AC,AB于E,F點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結論.在圖(2)中,若AB=AC=10,BC=12,當△DEF的面積等于△ABC的面積的時,求線段EF的長.19.(5分)M中學為創建園林學校,購買了若干桂花樹苗,計劃把迎賓大道的一側全部栽上桂花樹(兩端必須各栽一棵),并且每兩棵樹的間隔相等,如果每隔5米栽1棵,則樹苗缺11棵;如果每隔6米栽1棵,則樹苗正好用完,求購買了桂花樹苗多少棵?20.(8分)拋物線y=x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,﹣3).求拋物線的解析式;如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數m的變化范圍,并說明理由.如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當k發生改變時,請說明直線QH過定點,并求定點坐標.21.(10分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,FC交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.22.(10分)如圖所示,在正方形ABCD中,E,F分別是邊AD,CD上的點,AE=ED,DF=DC,連結EF并延長交BC的延長線于點G,連結BE.求證:△ABE∽△DEF.若正方形的邊長為4,求BG的長.23.(12分)分式化簡:(a-)÷24.(14分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數量的禮盒也全部售完,禮盒的售價均為60元/盒.(1)2014年這種禮盒的進價是多少元/盒?(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

直接利用分式有意義則分母不為零進而得出答案.【詳解】解:分式有意義,則x﹣1≠0,解得:x≠1.故選:A.【點睛】此題主要考查了分式有意義的條件,正確把握分式的定義是解題關鍵.當分母不等于零時,分式有意義;當分母等于零時,分式無意義.分式是否有意義與分子的取值無關.2、B【解析】

根據垂徑定理求出AD,根據勾股定理列式求出半徑,根據三角形中位線定理計算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵3、A【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由于左視圖和俯視圖為長方形可得此幾何體為柱體,由主視圖為三角形可得為三棱柱.故選:B.【點睛】此題主要考查了學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.4、B【解析】

延長AC交DE于點F,根據所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長AC交DE于點F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內錯角相等,兩直線平行;③同旁內角互補,兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內,垂直于同一直線的兩條直線互相平行.5、C【解析】A選項,∵在△ABC中,點D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.6、A【解析】

設原計劃每天生產零件x個,則實際每天生產零件為1.5x個,根據提前5天完成任務,列方程即可.【詳解】設原計劃每天生產零件x個,則實際每天生產零件為1.5x個,由題意得,故選:A.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列方程即可.7、D【解析】

5出現了6次,出現的次數最多,則眾數是5;把這些數從小到大排列,中位數是第10,11個數的平均數,則中位數是(6+6)÷2=6;平均數是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.8、D【解析】

根據統計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據統計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質地均勻的正六面體骰子,向上的面的點數是偶數的概率為,不符合題意;C、先后兩次擲一枚質地均勻的硬幣,兩次都出現反面的概率為,不符合題意;D、先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩定值即概率.用到的知識點為:概率=所求情況數與總情況數之比.9、D【解析】解:A.平均數為(158+160+154+158+170)÷5=160,正確,故本選項不符合題意;B.按照從小到大的順序排列為154,158,158,160,170,位于中間位置的數為158,故中位數為158,正確,故本選項不符合題意;C.數據158出現了2次,次數最多,故眾數為158,正確,故本選項不符合題意;D.這組數據的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,錯誤,故本選項符合題意.故選D.點睛:本題考查了眾數、平均數、中位數及方差,解題的關鍵是掌握它們的定義,難度不大.10、C【解析】

根據菱形的性質:①菱形具有平行四邊形的一切性質;②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質二、填空題(共7小題,每小題3分,滿分21分)11、AC=BC.【解析】分析:添加AC=BC,根據三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.詳解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案為:AC=BC.點睛:此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.12、1.【解析】

根據兩點間的距離公式可求m的值.【詳解】依題意有,解得,故答案為:1.【點睛】考查了坐標確定位置,正確理解實際距離的定義是解題關鍵.13、1.06×104【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:10600=1.06×104,故答案為:1.06×104【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.14、34【解析】∵,∴=,故答案為34.15、3【解析】如圖,連接BB′,∵△ABC繞點A順時針方向旋轉60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點睛:本題考查了旋轉的性質,全等三角形的判定與性質,等邊三角形的判定與性質,等腰直角三角形的性質,作輔助線構造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵,也是本題的難點.16、-1【解析】

根據關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數根可知△=0,求出m的取值即可.【詳解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案為-1.【點睛】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的兩個實數根;②當△=0時,方程有兩個相等的兩個實數根;③當△<0時,方程無實數根.17、1【解析】解:∵點(2,4)在反比例函數的圖象上,∴,即k=1.故答案為1.點睛:本題考查的是反比例函數圖象上點的坐標特點,即反比例函數圖象上各點的坐標一定適合此函數的解析式.三、解答題(共7小題,滿分69分)18、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,證明見解析;(3)4.【解析】

(1)根據等腰三角形的性質以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質得出,從而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面積等于△ABC的面積的,求出DH的長,從而利用S△DEF的值求出EF即可【詳解】解:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,證明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)連接AD,過D點作DG⊥EF,DH⊥BF,垂足分別為G,H.∵AB=AC,D是BC的中點,∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=?BC?AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵?AD?BD=?AB?DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【點睛】本題考查了和相似有關的綜合性題目,用到的知識點有三角形相似的判定和性質、等腰三角形的性質以及勾股定理的運用,靈活運用相似三角形的判定定理和性質定理是解題的關鍵,解答時,要仔細觀察圖形、選擇合適的判定方法,注意數形結合思想的運用.19、購買了桂花樹苗1棵【解析】分析:首先設購買了桂花樹苗x棵,然后根據題意列出一元一次方程,從而得出答案.詳解:設購買了桂花樹苗x棵,根據題意,得:5(x+11-1)=6(x-1),解得x=1.答:購買了桂花樹苗1棵.點睛:本題主要考查的是一元一次方程的應用,屬于基礎題型.解決這個問題的關鍵就是找出等量關系以及路的長度與樹的棵樹之間的關系.20、(1)y=x2﹣2x﹣3;(2);(3)當k發生改變時,直線QH過定點,定點坐標為(0,﹣2)【解析】

(1)把點A(﹣1,0),C(0,﹣3)代入拋物線表達式求得b,c,即可得出拋物線的解析式;(2)作CH⊥EF于H,設N的坐標為(1,n),證明Rt△NCH∽△MNF,可得m=n2+3n+1,因為﹣4≤n≤0,即可得出m的取值范圍;(3)設點P(x1,y1),Q(x2,y2),則點H(﹣x1,y1),設直線HQ表達式為y=ax+t,用待定系數法和韋達定理可求得a=x2﹣x1,t=﹣2,即可得出直線QH過定點(0,﹣2).【詳解】解:(1)∵拋物線y=x2+bx+c經過點A、C,把點A(﹣1,0),C(0,﹣3)代入,得:,解得,∴拋物線的解析式為y=x2﹣2x﹣3;(2)如圖,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴拋物線的頂點坐標E(1,﹣4),設N的坐標為(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴當時,m最小值為;當n=﹣4時,m有最大值,m的最大值=16﹣12+1=1.∴m的取值范圍是.(3)設點P(x1,y1),Q(x2,y2),∵過點P作x軸平行線交拋物線于點H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,設直線HQ表達式為y=ax+t,將點Q(x2,y2),H(﹣x1,y1)代入,得,∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,∴a=x2﹣x1,∵=(x2﹣x1)x2+t,∴t=﹣2,∴直線HQ表達式為y=(x2﹣x1)x﹣2,∴當k發生改變時,直線QH過定點,定點坐標為(0,﹣2).【點睛】本題主要考查的是二次函數的綜合應用,解答本題主要應用了配方法求二次函數的最值、待定系數法求一次函數的解析式、(2)問通過相似三角形建立m與n的函數關系式是解題的關鍵.21、(1)證明見解析;(2)1.【解析】試題分析:(1)根據矩形的性質得到AB=CD,∠B=∠D=90°,根據折疊的性質得到∠E=∠B,AB=AE,根據全等三角形的判定定理即可得到結論;(2)根據全等三角形的性質得到AF=CF,EF=DF,根據勾股定理得到DF=3,根據三角形的面積公式即可得到結論.試題解析:(1)∵四邊形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵將矩形ABCD沿對角線AC翻折,點B落在點E處,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF與△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴圖中陰影部分的面積=S△ACE﹣S△AEF=×4×8﹣×4×3=1.點睛:本題考查了翻折變換﹣折疊的性質,熟練掌握折疊的性質是解題的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論