




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
EssentialsofManagementInformationSystemsFourteenthEditionChapter11ImprovingDecisionMakingandManagingArtificialIntelligenceCopyright?2021,2019,2017PearsonEducation,Inc.
AllRightsReservedLearningObjectives11.1
Whatarethedifferenttypesofdecisions,andhowdoesthedecision-makingprocesswork?11.2
Howdobusinessintelligenceandbusinessanalyticssupportdecisionmaking?11.3
Whatisartificialintelligence(AI)?Howdoesitdifferfromhumanintelligence?11.4
WhatarethemajortypesofAItechniquesandhowdotheybenefitorganizations?11.5
HowwillMIShelpmycareer?VideoCasesCase1:HowIBM’sWatsonBecameaJeopardyChampionCase2:BusinessIntelligenceHelpstheCincinnatiZooWorkSmarterInstructionalVideo1:IBMWatsonDemoOncologyDiagnosisandTreatmentMachineLearningHelpsAkershusUniversityHospitalMakeBetterTreatmentDecisionsProblemUnstructureddataVerylargevolumeofdataOpportunitiesfromnewtechnologySolutionsIBMWatsonExplorerMachinelearningNaturallanguageprocessingIllustrateshowinformationsystemsimprovedecisionmakingBusinessValueofImprovedDecisionMakingPossibletomeasurevalueofimproveddecisionmakingDecisionsmadeatalllevelsofthefirmSomearecommon,routine,andnumerousAlthoughvalueofimprovinganysingledecisionmaybesmall,improvinghundredsofthousandsof“small”decisionsaddsuptolargeannualvalueforthebusinessTable11.1BusinessValueofEnhancedDecisionMakingExampleDecisionValueDecisionMaker#ofAnnualDecisionsEstimatedValuetoFirmAnnualAllocatesupporttomostvaluablecustomersAccountsmanager12$100,000$1,200,000PredictcallcenterdailydemandCallCentermanagement4150,000600,000DecidepartsinventoryleveldailyInventorymanager3655,0001,825,000IdentifycompetitivebidsfrommajorsuppliersSeniormanagement12,000,0002,000,000ScheduleproductiontofillordersManufacturingmanager15010,0001,500,000TypesofDecisionsUnstructuredDecisionmakermustprovidejudgmenttosolveproblemNovel,important,nonroutineNowell-understoodoragreed-uponprocedureformakingthemStructuredRepetitiveandroutineInvolvedefiniteprocedureforhandlingthemsodonothavetobetreatedasnewSemi-structuredOnlypartofproblemhasclear-cutanswerprovidedbyacceptedprocedureFigure11.1InformationRequirementsofKeyDecision-MakingGroupsinaFirmTheDecision-MakingProcess1.IntelligenceDiscovering,identifying,andunderstandingtheproblemsoccurringintheorganization2.DesignIdentifyingandexploringvarioussolutions3.ChoiceChoosingamongsolutionalternatives4.ImplementationMakingchosenalternativeworkandmonitoringhowwellsolutionisworkingFigure11.2StagesinDecisionMakingHigh-VelocityAutomatedDecisionMakingHumanseliminatedDecision-makingprocesscapturedbycomputeralgorithmsPredefinedrangeofacceptablesolutionsDecisionsmadefasterthanmanagerscanmonitorandcontrolE.g.,TradingprogramsatelectronicstockexchangesQualityofDecisionsandDecisionMakingAccuracyComprehensivenessFairnessSpeed(efficiency)CoherenceDueprocessWhatIsBusinessIntelligence?InfrastructureformanagingdatafrombusinessenvironmentWarehousingIntegratingReportingAnalyzingHadoop,OLAP,analyticsProductsdefinedbytechnologyvendorsandconsultingfirmsTheBusinessIntelligenceEnvironmentSixelementsintheBIenvironment1.
Datafrombusinessenvironment2.Businessintelligenceinfrastructure3.Businessanalyticstoolset4.Managerialusersandmethods5.DeliveryplatformMSS,
DSS,
ESS6.
UserinterfaceFigure11.3BusinessIntelligenceandAnalyticsforDecisionSupportBusinessIntelligenceandAnalyticsCapabilitiesProductionreportsParameterizedreportsDashboards/scorecardsAd-hocquery/search/reportcreationDrill-downForecasts,scenarios,modelsLinearforecasting,what-ifscenarioanalysis,dataanalysisTable11.3ExamplesofPredefinedBusinessIntelligenceProductionReportsBusinessFunctionalAreaProductionReportsSalesSalesforecasts,salesteamperformance,crossselling,salescycletimesService/CallCenterCustomersatisfaction,servicecost,resolutionrates,churnratesMarketingCampaigneffectiveness,loyaltyandattrition,marketbasketanalysisProcurementandSupportDirectandindirectspending,off-contractpurchases,supplierperformanceSupplyChainBacklog,ful?llmentstatus,ordercycletime,billofmaterialsanalysisFinancialsGeneralledger,accountsreceivableandpayable,cash?ow,pro?tabilityHumanResourcesEmployeeproductivity,compensation,workforcedemographics,retentionInteractiveSession–Technology:SiemensMakesBusinessProcessesMoreVisibleClassdiscussionIdentifytheprobleminthiscasestudy.Whatpeople,organization,andtechnologyfactorscontributedtotheproblem?Describethecapabilitiesofprocessminingsoftware.Wasthisaneffectivesolution?Explainyouranswer.HowdidprocessminingchangedecisionmakingatSiemens?Whatpeople,organization,andtechnologyissuesneedtobeaddressedwhenimplementingprocessminingsystems?PredictiveAnalyticsUsesstatisticalanalytics,datamining,historicaldata;assumptionsoffutureconditionsExtractsinformationfromdatatopredictfuturetrendsandbehaviorpatternsResponsestodirectmarketingcampaignsBestpotentialcustomersforcreditcardsAt-riskcustomersCustomerresponsetopricechangesandnewservicesAccuraciesrangefrom65to90percentBigDataAnalyticsPredictiveanalyticscanusethebigdatageneratedfromsocialmedia,consumertransactions,sensorandmachineoutput,etc.CombiningwithcustomerdataBigdataanalyticsdrivingmovetoward“smartcities”UtilitymanagementTransportationoperationHealthcaredeliveryPublicsafetyOperationalIntelligenceandAnalyticsOperationalintelligenceDay-to-daymonitoringofbusinessdecisionsandactivityReal-timemonitoringSchneiderNationaltruckloadlogisticsservicesproviderDatadevelopedfromsensorsintrucks,trains,industrialsystemsTheInternetofThings(IoT)providinghugestreamsofdatafromconnectedsensorsanddevicesLocationAnalyticsandGISLocationanalyticsBigdataanalyticsthatuseslocationdatafrommobilephones,sensors,andmapsE.g.HelpingautilitycompanyviewcustomercostsasrelatedtolocationGIS–GeographicinformationsystemsHelpdecisionmakersvisualizeproblemswithmappingTielocationdataaboutresourcestomapFigure11.4BusinessIntelligenceUsersInteractiveSession–Organizations:PredictiveMaintenanceintheOilandGasIndustryClassdiscussionWhyispredictivemaintenancesoimportantintheoilandgasindustry?Whatproblemsdoesitsolve?WhatistheroleoftheInternetofThings(IoT)andBigDataanalyticsinpredictivemaintenance?HowdidBPandRoyalDutchShell’spredictivemaintenanceapplicationschangebusinessoperationsanddecisionmaking?Giveanexampleofhowpredictivemaintenancesystemscouldbeusedinanotherindustry.SupportforSemi-StructuredDecisionsDecision-supportsystems(DSS)BIdeliveryplatformfor“super-users”whowanttocreateownreports,usemoresophisticatedanalyticsandmodelsWhat-ifanalysisSensitivityanalysisBackwardsensitivityanalysisPivottables:SpreadsheetfunctionformultidimensionalanalysisIntensivemodelingtechniquesFigure11.5SensitivityAnalysisFigure11.6APivotTableThatExaminesCustomerRegionalDistributionandAdvertisingSourceDecisionSupportforSeniorManagement(1of2)ExecutivesupportsystemsBalancedscorecardmethodMeasuresfourdimensionsoffirmperformanceFinancialBusinessprocessCustomerLearningandgrowthKeyperformanceindicators(KPI)usedtomeasureeachdimensionFigure11.7TheBalancedScorecardFrameworkDecisionSupportforSeniorManagement(2of2)Businessperformancemanagement(BPM)Managementmethodologybasedonfirm’sstrategiesTranslatesstrategiesintooperationaltargetsUsessetofKPIstomeasureprogresstowardtargetsESScombineinternaldatawithexternalFinancialdata,news,etc.Drill-downcapabilitiesArtificialIntelligenceTechniquesArtificialintelligence:Grandvisionvs.narrowdefinitionEvolutionofAIBigdatadatabasesReductioninthepriceofprocessorsExpansionincapacityofprocessorsRefinementandexplosionofalgorithmsLargeinvestmentsinITandAIProgressinimagerecognitionandnaturallanguageE.g.:Siri,Alexa,facialrecognitionWhatAretheMajorTypesofAITechniquesandHowDoTheyBenefitOrganizations?(1of5)ExpertsystemsCapturehumanexpertiseinalimiteddomainofknowledgeExpressexpertiseasasetofrulesinasoftwaresystemKnowledgebaseInferenceengineFigure11.8RulesinanExpertSystemWhatAretheMajorTypesofAITechniquesandHowDoTheyBenefitOrganizations?(2of5)MachinelearningComputersimprovingperformancebyusingalgorithmstolearnpatternsfromdataandexamplesNeuralnetworksFindpatternsandrelationshipsinverylargeamountsofdataSensoringandprocessingnodes“DeepLearning”neuralnetworksFigure11.9HowaNeuralNetworkWorksFigure11.10ADeepLearningNetworkWhatAretheMajorTypesofAITechniquesandHowDoTheyBenefitOrganizations?(3of5)GeneticalgorithmsExaminelargenumberofsolutionsforaproblemBasedonmachinelearningtechniquesinspiredbyevolutionarybiologyFigure11.11TheComponentsofaGeneticAlgorithmWhatAretheMajorTypesofAITechniquesandHowDoTheyBenefitOrganizations?(4of5)NaturallanguageprocessingSoftwarethatcanprocessvoiceortextcommandsusingnaturalhumanlanguageComputervisionsystemsEmulatehumanvisualsystemtoviewandextractinformationfromreal-worldimagesRobotics
DesignanduseofmovablemachinesthatcansubstituteforhumansWhatAre
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東選修考試試題及答案
- 二零二五年度奢侈品場(chǎng)銷售代理服務(wù)合同
- 二零二五年度ISO9000質(zhì)量管理體系升級(jí)改造咨詢合同
- 2025版環(huán)保行業(yè)Excel合同臺(tái)賬模板設(shè)計(jì)與授權(quán)協(xié)議
- 二零二五年度綠色施工班組勞動(dòng)合同范本
- 2025版餐飲店線上線下推廣合作協(xié)議
- 二零二五年度老舊小區(qū)改造居民拆遷補(bǔ)償合同
- 2025版安置房購(gòu)買合同范本(含政策支持)
- 二零二五年度印刷設(shè)備租賃合同書(shū)范例
- 二零二五年度grc抗震加固設(shè)計(jì)與施工合同23
- YYT 0657-2017 醫(yī)用離心機(jī)行業(yè)標(biāo)準(zhǔn)
- 四川省成都市新都區(qū)新都一中學(xué)實(shí)驗(yàn)學(xué)校2024-2025學(xué)年上學(xué)期七年級(jí)分班(獎(jiǎng)學(xué)金)模擬數(shù)學(xué)試題
- 投標(biāo)資格承諾聲明函(完整版)
- 氫自由基湮滅劑叔丁醇的作用
- 12、口腔科診療指南及技術(shù)操作規(guī)范
- 2022年4月自考04184線性代數(shù)(經(jīng)管類)試題及答案含評(píng)分標(biāo)準(zhǔn)
- 頂管專項(xiàng)施工方案審查意見(jiàn)
- ZAPI(薩牌)控制器ACE2-重要參數(shù)以及調(diào)試步驟
- 道路綠化養(yǎng)護(hù)投標(biāo)方案(技術(shù)方案)
- GB/T 11064.16-2023碳酸鋰、單水氫氧化鋰、氯化鋰化學(xué)分析方法第16部分:鈣、鎂、銅、鉛、鋅、鎳、錳、鎘、鋁、鐵、硫酸根含量的測(cè)定電感耦合等離子體原子發(fā)射光譜法
- 2023年云南文山州州屬事業(yè)單位選調(diào)考試試卷真題
評(píng)論
0/150
提交評(píng)論