管理信息系統(tǒng)(精要版·第14版) 課件 第11章提高決策能力和管理人工智能_第1頁(yè)
管理信息系統(tǒng)(精要版·第14版) 課件 第11章提高決策能力和管理人工智能_第2頁(yè)
管理信息系統(tǒng)(精要版·第14版) 課件 第11章提高決策能力和管理人工智能_第3頁(yè)
管理信息系統(tǒng)(精要版·第14版) 課件 第11章提高決策能力和管理人工智能_第4頁(yè)
管理信息系統(tǒng)(精要版·第14版) 課件 第11章提高決策能力和管理人工智能_第5頁(yè)
已閱讀5頁(yè),還剩37頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

EssentialsofManagementInformationSystemsFourteenthEditionChapter11ImprovingDecisionMakingandManagingArtificialIntelligenceCopyright?2021,2019,2017PearsonEducation,Inc.

AllRightsReservedLearningObjectives11.1

Whatarethedifferenttypesofdecisions,andhowdoesthedecision-makingprocesswork?11.2

Howdobusinessintelligenceandbusinessanalyticssupportdecisionmaking?11.3

Whatisartificialintelligence(AI)?Howdoesitdifferfromhumanintelligence?11.4

WhatarethemajortypesofAItechniquesandhowdotheybenefitorganizations?11.5

HowwillMIShelpmycareer?VideoCasesCase1:HowIBM’sWatsonBecameaJeopardyChampionCase2:BusinessIntelligenceHelpstheCincinnatiZooWorkSmarterInstructionalVideo1:IBMWatsonDemoOncologyDiagnosisandTreatmentMachineLearningHelpsAkershusUniversityHospitalMakeBetterTreatmentDecisionsProblemUnstructureddataVerylargevolumeofdataOpportunitiesfromnewtechnologySolutionsIBMWatsonExplorerMachinelearningNaturallanguageprocessingIllustrateshowinformationsystemsimprovedecisionmakingBusinessValueofImprovedDecisionMakingPossibletomeasurevalueofimproveddecisionmakingDecisionsmadeatalllevelsofthefirmSomearecommon,routine,andnumerousAlthoughvalueofimprovinganysingledecisionmaybesmall,improvinghundredsofthousandsof“small”decisionsaddsuptolargeannualvalueforthebusinessTable11.1BusinessValueofEnhancedDecisionMakingExampleDecisionValueDecisionMaker#ofAnnualDecisionsEstimatedValuetoFirmAnnualAllocatesupporttomostvaluablecustomersAccountsmanager12$100,000$1,200,000PredictcallcenterdailydemandCallCentermanagement4150,000600,000DecidepartsinventoryleveldailyInventorymanager3655,0001,825,000IdentifycompetitivebidsfrommajorsuppliersSeniormanagement12,000,0002,000,000ScheduleproductiontofillordersManufacturingmanager15010,0001,500,000TypesofDecisionsUnstructuredDecisionmakermustprovidejudgmenttosolveproblemNovel,important,nonroutineNowell-understoodoragreed-uponprocedureformakingthemStructuredRepetitiveandroutineInvolvedefiniteprocedureforhandlingthemsodonothavetobetreatedasnewSemi-structuredOnlypartofproblemhasclear-cutanswerprovidedbyacceptedprocedureFigure11.1InformationRequirementsofKeyDecision-MakingGroupsinaFirmTheDecision-MakingProcess1.IntelligenceDiscovering,identifying,andunderstandingtheproblemsoccurringintheorganization2.DesignIdentifyingandexploringvarioussolutions3.ChoiceChoosingamongsolutionalternatives4.ImplementationMakingchosenalternativeworkandmonitoringhowwellsolutionisworkingFigure11.2StagesinDecisionMakingHigh-VelocityAutomatedDecisionMakingHumanseliminatedDecision-makingprocesscapturedbycomputeralgorithmsPredefinedrangeofacceptablesolutionsDecisionsmadefasterthanmanagerscanmonitorandcontrolE.g.,TradingprogramsatelectronicstockexchangesQualityofDecisionsandDecisionMakingAccuracyComprehensivenessFairnessSpeed(efficiency)CoherenceDueprocessWhatIsBusinessIntelligence?InfrastructureformanagingdatafrombusinessenvironmentWarehousingIntegratingReportingAnalyzingHadoop,OLAP,analyticsProductsdefinedbytechnologyvendorsandconsultingfirmsTheBusinessIntelligenceEnvironmentSixelementsintheBIenvironment1.

Datafrombusinessenvironment2.Businessintelligenceinfrastructure3.Businessanalyticstoolset4.Managerialusersandmethods5.DeliveryplatformMSS,

DSS,

ESS6.

UserinterfaceFigure11.3BusinessIntelligenceandAnalyticsforDecisionSupportBusinessIntelligenceandAnalyticsCapabilitiesProductionreportsParameterizedreportsDashboards/scorecardsAd-hocquery/search/reportcreationDrill-downForecasts,scenarios,modelsLinearforecasting,what-ifscenarioanalysis,dataanalysisTable11.3ExamplesofPredefinedBusinessIntelligenceProductionReportsBusinessFunctionalAreaProductionReportsSalesSalesforecasts,salesteamperformance,crossselling,salescycletimesService/CallCenterCustomersatisfaction,servicecost,resolutionrates,churnratesMarketingCampaigneffectiveness,loyaltyandattrition,marketbasketanalysisProcurementandSupportDirectandindirectspending,off-contractpurchases,supplierperformanceSupplyChainBacklog,ful?llmentstatus,ordercycletime,billofmaterialsanalysisFinancialsGeneralledger,accountsreceivableandpayable,cash?ow,pro?tabilityHumanResourcesEmployeeproductivity,compensation,workforcedemographics,retentionInteractiveSession–Technology:SiemensMakesBusinessProcessesMoreVisibleClassdiscussionIdentifytheprobleminthiscasestudy.Whatpeople,organization,andtechnologyfactorscontributedtotheproblem?Describethecapabilitiesofprocessminingsoftware.Wasthisaneffectivesolution?Explainyouranswer.HowdidprocessminingchangedecisionmakingatSiemens?Whatpeople,organization,andtechnologyissuesneedtobeaddressedwhenimplementingprocessminingsystems?PredictiveAnalyticsUsesstatisticalanalytics,datamining,historicaldata;assumptionsoffutureconditionsExtractsinformationfromdatatopredictfuturetrendsandbehaviorpatternsResponsestodirectmarketingcampaignsBestpotentialcustomersforcreditcardsAt-riskcustomersCustomerresponsetopricechangesandnewservicesAccuraciesrangefrom65to90percentBigDataAnalyticsPredictiveanalyticscanusethebigdatageneratedfromsocialmedia,consumertransactions,sensorandmachineoutput,etc.CombiningwithcustomerdataBigdataanalyticsdrivingmovetoward“smartcities”UtilitymanagementTransportationoperationHealthcaredeliveryPublicsafetyOperationalIntelligenceandAnalyticsOperationalintelligenceDay-to-daymonitoringofbusinessdecisionsandactivityReal-timemonitoringSchneiderNationaltruckloadlogisticsservicesproviderDatadevelopedfromsensorsintrucks,trains,industrialsystemsTheInternetofThings(IoT)providinghugestreamsofdatafromconnectedsensorsanddevicesLocationAnalyticsandGISLocationanalyticsBigdataanalyticsthatuseslocationdatafrommobilephones,sensors,andmapsE.g.HelpingautilitycompanyviewcustomercostsasrelatedtolocationGIS–GeographicinformationsystemsHelpdecisionmakersvisualizeproblemswithmappingTielocationdataaboutresourcestomapFigure11.4BusinessIntelligenceUsersInteractiveSession–Organizations:PredictiveMaintenanceintheOilandGasIndustryClassdiscussionWhyispredictivemaintenancesoimportantintheoilandgasindustry?Whatproblemsdoesitsolve?WhatistheroleoftheInternetofThings(IoT)andBigDataanalyticsinpredictivemaintenance?HowdidBPandRoyalDutchShell’spredictivemaintenanceapplicationschangebusinessoperationsanddecisionmaking?Giveanexampleofhowpredictivemaintenancesystemscouldbeusedinanotherindustry.SupportforSemi-StructuredDecisionsDecision-supportsystems(DSS)BIdeliveryplatformfor“super-users”whowanttocreateownreports,usemoresophisticatedanalyticsandmodelsWhat-ifanalysisSensitivityanalysisBackwardsensitivityanalysisPivottables:SpreadsheetfunctionformultidimensionalanalysisIntensivemodelingtechniquesFigure11.5SensitivityAnalysisFigure11.6APivotTableThatExaminesCustomerRegionalDistributionandAdvertisingSourceDecisionSupportforSeniorManagement(1of2)ExecutivesupportsystemsBalancedscorecardmethodMeasuresfourdimensionsoffirmperformanceFinancialBusinessprocessCustomerLearningandgrowthKeyperformanceindicators(KPI)usedtomeasureeachdimensionFigure11.7TheBalancedScorecardFrameworkDecisionSupportforSeniorManagement(2of2)Businessperformancemanagement(BPM)Managementmethodologybasedonfirm’sstrategiesTranslatesstrategiesintooperationaltargetsUsessetofKPIstomeasureprogresstowardtargetsESScombineinternaldatawithexternalFinancialdata,news,etc.Drill-downcapabilitiesArtificialIntelligenceTechniquesArtificialintelligence:Grandvisionvs.narrowdefinitionEvolutionofAIBigdatadatabasesReductioninthepriceofprocessorsExpansionincapacityofprocessorsRefinementandexplosionofalgorithmsLargeinvestmentsinITandAIProgressinimagerecognitionandnaturallanguageE.g.:Siri,Alexa,facialrecognitionWhatAretheMajorTypesofAITechniquesandHowDoTheyBenefitOrganizations?(1of5)ExpertsystemsCapturehumanexpertiseinalimiteddomainofknowledgeExpressexpertiseasasetofrulesinasoftwaresystemKnowledgebaseInferenceengineFigure11.8RulesinanExpertSystemWhatAretheMajorTypesofAITechniquesandHowDoTheyBenefitOrganizations?(2of5)MachinelearningComputersimprovingperformancebyusingalgorithmstolearnpatternsfromdataandexamplesNeuralnetworksFindpatternsandrelationshipsinverylargeamountsofdataSensoringandprocessingnodes“DeepLearning”neuralnetworksFigure11.9HowaNeuralNetworkWorksFigure11.10ADeepLearningNetworkWhatAretheMajorTypesofAITechniquesandHowDoTheyBenefitOrganizations?(3of5)GeneticalgorithmsExaminelargenumberofsolutionsforaproblemBasedonmachinelearningtechniquesinspiredbyevolutionarybiologyFigure11.11TheComponentsofaGeneticAlgorithmWhatAretheMajorTypesofAITechniquesandHowDoTheyBenefitOrganizations?(4of5)NaturallanguageprocessingSoftwarethatcanprocessvoiceortextcommandsusingnaturalhumanlanguageComputervisionsystemsEmulatehumanvisualsystemtoviewandextractinformationfromreal-worldimagesRobotics

DesignanduseofmovablemachinesthatcansubstituteforhumansWhatAre

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論