




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省伊春市重點達標名校2023-2024學年中考五模數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在半徑等于5cm的圓內有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°2.如圖,是由幾個大小相同的小立方塊所搭幾何體的俯視圖,其中小正方形中的數字表示在該位置的小立方塊的個數,則這個幾何體的主視圖是()A. B. C. D.3.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個數有()A.1 B.2 C.3 D.44.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:25.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,DE:EC=2:3,則S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:256.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,現已知小林家距學校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設乘公交車平均每小時走x千米,根據題意可列方程為()A. B. C. D.7.如圖1,在矩形ABCD中,動點E從A出發,沿AB→BC方向運動,當點E到達點C時停止運動,過點E做FE⊥AE,交CD于F點,設點E運動路程為x,FC=y,如圖2所表示的是y與x的函數關系的大致圖象,當點E在BC上運動時,FC的最大長度是,則矩形ABCD的面積是()A. B.5 C.6 D.8.如圖,矩形是由三個全等矩形拼成的,與,,,,分別交于點,設,,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.129.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數為().A.50° B.40° C.30° D.25°10.下列所述圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.線段 B.等邊三角形 C.正方形 D.平行四邊形二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結論的個數是______.12.如圖,AC、BD為圓O的兩條垂直的直徑,動點P從圓心O出發,沿線段OC-A.B.C.D.13.如圖,在菱形紙片中,,,將菱形紙片翻折,使點落在的中點處,折痕為,點,分別在邊,上,則的值為________.14.在一次數學測試中,同年級人數相同的甲、乙兩個班的成績統計如下表:班級平均分中位數方差甲班乙班數學老師讓同學們針對統計的結果進行一下評估,學生的評估結果如下:這次數學測試成績中,甲、乙兩個班的平均水平相同;甲班學生中數學成績95分及以上的人數少;乙班學生的數學成績比較整齊,分化較小.上述評估中,正確的是______填序號15.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內的地面寬度為,兩側離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)16.若反比例函數y=﹣的圖象經過點A(m,3),則m的值是_____.三、解答題(共8題,共72分)17.(8分)某自動化車間計劃生產480個零件,當生產任務完成一半時,停止生產進行自動化程序軟件升級,用時20分鐘,恢復生產后工作效率比原來提高了,結果完成任務時比原計劃提前了40分鐘,求軟件升級后每小時生產多少個零件?18.(8分)解方程:x2-4x-5=019.(8分)已知函數的圖象與函數的圖象交于點.(1)若,求的值和點P的坐標;(2)當時,結合函數圖象,直接寫出實數的取值范圍.20.(8分)在中,,以為直徑的圓交于,交于.過點的切線交的延長線于.求證:是的切線.21.(8分)如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點E在小正方形的頂點上;(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點字母按逆時針順序),且面積為10,點M、N均在小正方形的頂點上;(3)連接ME,并直接寫出EM的長.22.(10分)在平面直角坐標系中,一次函數(a≠0)的圖象與反比例函數的圖象交于第二、第四象限內的A、B兩點,與軸交于點C,過點A作AH⊥軸,垂足為點H,OH=3,tan∠AOH=,點B的坐標為(,-2).求該反比例函數和一次函數的解析式;求△AHO的周長.23.(12分)已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.(1)求∠AEC的度數;(2)請你判斷AE、BE、AC三條線段之間的等量關系,并證明你的結論.24.如圖,在Rt△ABC中,,點在邊上,⊥,點為垂足,,∠DAB=450,tanB=.(1)求的長;(2)求的余弦值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據題意畫出相應的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數定義及特殊角的三角函數值求出∠AOD的度數,進而確定出∠AOB的度數,利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數.【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內接四邊形AEBC對角互補,∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數值,以及銳角三角函數定義,熟練掌握垂徑定理是解本題的關鍵.2、C【解析】
由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,據此可得.【詳解】由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,所以其主視圖為:故選C.【點睛】考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.3、C【解析】
①圖中有3個等腰直角三角形,故結論錯誤;②根據ASA證明即可,結論正確;③利用面積法證明即可,結論正確;④利用三角形的中線的性質即可證明,結論正確.【詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個等腰直角三角形,故①錯誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【點睛】本題考查相似三角形的判定和性質、等腰直角三角形的判定和性質、三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考選擇題中的壓軸題.4、D【解析】
依據平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據平行線分線段成比例定理,即可得出AE與EC的比值.【詳解】∵l1∥l2,∴,設AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.5、D【解析】試題分析:先根據平行四邊形的性質及相似三角形的判定定理得出△DEF∽△BAF,從而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25試題解析:∵四邊形ABCD是平行四邊形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考點:1.相似三角形的判定與性質;2.三角形的面積;3.平行四邊形的性質.6、D【解析】分析:根據乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設乘公交車平均每小時走x千米,根據題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關鍵是正確找出題目中的相等關系,用代數式表示出相等關系中的各個部分,列出方程即可.7、B【解析】
易證△CFE∽△BEA,可得,根據二次函數圖象對稱性可得E在BC中點時,CF有最大值,列出方程式即可解題.【詳解】若點E在BC上時,如圖∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函數圖象對稱性可得E在BC中點時,CF有最大值,此時,BE=CE=x﹣,即,∴,當y=時,代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面積為2×=5;故選B.【點睛】本題考查了二次函數頂點問題,考查了相似三角形的判定和性質,考查了矩形面積的計算,本題中由圖象得出E為BC中點是解題的關鍵.8、B【解析】
由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質,就可以求出,從而可以求出.【詳解】∵矩形AEHC是由三個全等矩形拼成的,
∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,
∴四邊形BEFD、四邊形DFGC是平行四邊形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,
∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【點睛】本題考查了矩形的性質,平行四邊形的判定和性質,相似三角形的判定與性質,三角形的面積公式,得出S2=4S1,S3=9S1是解題關鍵.9、B【解析】
解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據平角為180°可得,∠2=90°﹣50°=40°.故選B.【點睛】本題考查平行線的性質,掌握兩直線平行,同位角相等是解題關鍵.10、B【解析】
根據中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、線段,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;
B、等邊三角形,是軸對稱圖形但不是中心對稱圖形,故本選項符合題意;
C、正方形,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;
D、平行四邊形,不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.
故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、①②③④.【解析】
由正方形的性質得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;
證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;
由等腰直角三角形的性質和矩形的性質得出∠ABC=∠ABF=45°,③正確;
證出△ACD∽△FEQ,得出對應邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正確;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,FG⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正確;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴AD?FE=AD2=FQ?AC,④正確;
故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質、正方形的性質、矩形的判定與性質、等腰直角三角形的性質;熟練掌握正方形的性質,證明三角形全等和三角形相似是解決問題的關鍵.12、C.【解析】分析:根據動點P在OC上運動時,∠APB逐漸減小,當P在上運動時,∠APB不變,當P在DO上運動時,∠APB逐漸增大,即可得出答案.解答:解:當動點P在OC上運動時,∠APB逐漸減小;當P在上運動時,∠APB不變;當P在DO上運動時,∠APB逐漸增大.故選C.13、【解析】
過點作,交延長線于,連接,交于,根據折疊的性質可得,,根據同角的余角相等可得,可得,由平行線的性質可得,根據的三角函數值可求出、的長,根據為中點即可求出的長,根據余弦的定義的值即可得答案.【詳解】過點作,交延長線于,連接,交于,∵四邊形是菱形,∴,∵將菱形紙片翻折,使點落在的中點處,折痕為,∴,,∵,,∴,∴,∵,∴,∴,∵,,∴,∴,,∵為中點,∴,∴,∴,∴.故答案為【點睛】本題考查了折疊的性質、菱形的性質及三角函數的定義,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,熟練掌握三角函數的定義并熟記特殊角的三角函數值是解題關鍵.14、【解析】
根據平均數、中位數和方差的意義分別對每一項進行解答,即可得出答案.【詳解】解:∵甲班的平均成績是92.5分,乙班的平均成績是92.5分,∴這次數學測試成績中,甲、乙兩個班的平均水平相同;故正確;∵甲班的中位數是95.5分,乙班的中位數是90.5分,甲班學生中數學成績95分及以上的人數多,故錯誤;∵甲班的方差是41.25分,乙班的方差是36.06分,甲班的方差大于乙班的方差,乙班學生的數學成績比較整齊,分化較小;故正確;上述評估中,正確的是;故答案為:.【點睛】本題考查平均數、中位數和方差,平均數表示一組數據的平均程度中位數是將一組數據從小到大或從大到小重新排列后,最中間的那個數或最中間兩個數的平均數;方差是用來衡量一組數據波動大小的量.15、9.1【解析】
建立直角坐標系,得到二次函數,門洞高度即為二次函數的頂點的縱坐標【詳解】如圖,以地面為x軸,門洞中點為O點,畫出y軸,建立直角坐標系由題意可知各點坐標為A(-4,0)B(4,0)D(-3,4)設拋物線解析式為y=ax2+c(a≠0)把B、D兩點帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點睛】本題考查二次函數的簡單應用,能夠建立直角坐標系解出二次函數解析式是本題關鍵16、﹣2【解析】∵反比例函數的圖象過點A(m,3),∴,解得.三、解答題(共8題,共72分)17、軟件升級后每小時生產1個零件.【解析】分析:設軟件升級前每小時生產x個零件,則軟件升級后每小時生產(1+)x個零件,根據工作時間=工作總量÷工作效率結合軟件升級后節省的時間,即可得出關于x的分式方程,解之經檢驗后即可得出結論.詳解:設軟件升級前每小時生產x個零件,則軟件升級后每小時生產(1+)x個零件,根據題意得:,解得:x=60,經檢驗,x=60是原方程的解,且符合題意,∴(1+)x=1.答:軟件升級后每小時生產1個零件.點睛:本題考查了分式方程的應用,找準等量關系,正確列出分式方程是解題的關鍵.18、x1="-1,"x2=5【解析】根據十字相乘法因式分解解方程即可.19、(1),,或;(2).【解析】【分析】(1)將P(m,n)代入y=kx,再結合m=2n即可求得k的值,聯立y=與y=kx組成方程組,解方程組即可求得點P的坐標;(2)畫出兩個函數的圖象,觀察函數的圖象即可得.【詳解】(1)∵函數的圖象交于點,∴n=mk,∵m=2n,∴n=2nk,∴k=,∴直線解析式為:y=x,解方程組,得,,∴交點P的坐標為:(,)或(-,-);(2)由題意畫出函數的圖象與函數的圖象如圖所示,∵函數的圖象與函數的交點P的坐標為(m,n),∴當k=1時,P的坐標為(1,1)或(-1,-1),此時|m|=|n|,當k>1時,結合圖象可知此時|m|<|n|,∴當時,≥1.【點睛】本題考查了反比例函數與正比例函數的交點,待定系數法等,運用數形結合思想解題是關鍵.20、證明見解析.【解析】
連接OE,由OB=OD和AB=AC可得,則OF∥AC,可得,由圓周角定理和等量代換可得,由SAS證得,從而得到,即可證得結論.【詳解】證明:如圖,連接,∵,∴,∵,∴,∴,∴,∴∵∴,則,∴,∴,即,在和中,∵,∴,∴∵是的切線,則,∴,∴,則,∴是的切線.【點睛】本題主要考查了等腰三角形的性質、切線的性質和判定、圓周角定理和全等三角形的判定與性質,熟練掌握圓周角定理和全等三角形的判定與性質是解題的關鍵.21、(1)畫圖見解析;(2)畫圖見解析;(3).【解析】
(1)直接利用直角三角形的性質結合勾股定理得出符合題意的圖形;(2)根據矩形的性質畫出符合題意的圖形;
(3)根據題意利用勾股定理得出結論.【詳解】(1)如圖所示;(2)如圖所示;(3)如圖所示,在直角三角形中,根據勾股定理得EM=.【點睛】本題考查了勾股定理與作圖,解題的關鍵是熟練的掌握直角三角形的性質與勾股定理.22、(1)一次函數為,反比例函數為;(2)△AHO的周長為12【解析】分析:(1)根據正切函數可得AH=4,根據反比例函數的特點k=xy為定值,列出方程,求出k的值,便可求出反比例函數的解析式;根據k的值求出B兩點的坐標,用待定系數法便可求出一次函數的解析式.(2)由(1)知AH的長,根據勾股定理,可得AO的長,根據三角形的周長,可得答案.詳解:(1)∵tan∠AOH==∴AH=OH=4∴A(-4,3),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 跨區域車輛安全監管與應急響應協議
- 醫療器械生產線參觀保密協議文本
- 特色小吃店品牌加盟合同
- 個人汽車抵押貸款合同續簽及展期協議
- 環境污染案件財產保全擔保合同
- 企業廠區綠色景觀設計與建設合作協議
- 餐飲行業服務員績效考核勞動合同
- 2024-2025學年云南省騰沖市第八中學高一下學期期中語文試題及答案
- 體育賽事特許經營政策環境分析考核試卷
- 樂器批發市場區域差異化策略考核試卷
- 2025年新疆維吾爾自治區中考歷史真題(解析版)
- 2025至2030中國新能源行業市場發展分析及前景趨勢與對策戰略報告
- 空壓機考試題及答案
- 中國再生水行業發展分析與發展趨勢預測研究報告2025-2028版
- lemontree中英文對照打印版
- 新蘇科版七年級下冊初中數學全冊教案
- DB44∕T 721-2010 通信鋼管塔(鐵塔)高處作業安全防護技術規范
- nm1系列塑料外殼式斷路器樣本
- 課程實施與課程評價課件(PPT 40頁)
- TSG Z7002-2022 特種設備檢測機構核準規則
- 河南某高速公路日常養護工程施工組織設計方案
評論
0/150
提交評論