




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶地區2025屆校高三第三次模擬數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一艘海輪從A處出發,以每小時24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點間的距離是()A.6海里 B.6海里 C.8海里 D.8海里2.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.3.數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實數λ的最大值為()A. B. C. D.4.復數,若復數在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.5.“角谷猜想”的內容是:對于任意一個大于1的整數,如果為偶數就除以2,如果是奇數,就將其乘3再加1,執行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.96.胡夫金字塔是底面為正方形的錐體,四個側面都是相同的等腰三角形.研究發現,該金字塔底面周長除以倍的塔高,恰好為祖沖之發現的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.7.若函數的圖象經過點,則函數圖象的一條對稱軸的方程可以為()A. B. C. D.8.年某省將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B. C. D.9.已知,其中是虛數單位,則對應的點的坐標為()A. B. C. D.10.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個11.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.12.執行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數值的個數為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.14.的展開式中的系數為____.15.如圖,半球內有一內接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.16.執行右邊的程序框圖,輸出的的值為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.18.(12分)已知的內角的對邊分別為,且滿足.(1)求角的大小;(2)若的面積為,求的周長的最小值.19.(12分)為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規定為考核優秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓的學生中隨機選取1人,請根據圖中數據,估計這名學生考核優秀的概率;(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優秀的概率;(Ⅲ)記表示學生的考核成績在區間的概率,根據以往培訓數據,規定當時培訓有效.請根據圖中數據,判斷此次中學生冰雪培訓活動是否有效,并說明理由.20.(12分)在平面直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)若射線與和分別交于點,求.21.(12分)在平面直角坐標系中,以原點為極點,x軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線C的極坐標方程為ρ=2cosθ,直線l的參數方程為(t為參數,α為直線的傾斜角).(1)寫出直線l的普通方程和曲線C的直角坐標方程;(2)若直線l與曲線C有唯一的公共點,求角α的大小.22.(10分)在直角坐標系中,橢圓的左、右焦點分別為,點在橢圓上且軸,直線交軸于點,,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點,且滿足,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
先根據給的條件求出三角形ABC的三個內角,再結合AB可求,應用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.本題考查正弦定理的實際應用,關鍵是將給的角度、線段長度轉化為三角形的邊角關系,利用正余弦定理求解.屬于中檔題.2.B【解析】
由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.3.D【解析】
利用等差數列通項公式推導出λ,由d∈[1,2],能求出實數λ取最大值.【詳解】∵數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數,∴d=1時,實數λ取最大值為λ.故選D.本題考查實數值的最大值的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.4.A【解析】
先通過復數在復平面內對應的點關于虛軸對稱,得到,再利用復數的除法求解.【詳解】因為復數在復平面內對應的點關于虛軸對稱,且復數,所以所以故選:A本題主要考查復數的基本運算和幾何意義,屬于基礎題.5.B【解析】
模擬程序運行,觀察變量值可得結論.【詳解】循環前,循環時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環,輸出.故選:B.本題考查程序框圖,考查循環結構,解題時可模擬程序運行,觀察變量值,從而得出結論.6.D【解析】
設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側棱長為,所以需要燈帶的總長度約為,故選D.7.B【解析】
由點求得的值,化簡解析式,根據三角函數對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B本小題主要考查根據三角函數圖象上點的坐標求參數,考查三角恒等變換,考查三角函數對稱軸的求法,屬于中檔題.8.B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.9.C【解析】
利用復數相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.本題考查復數的代數表示法及其幾何意義,考查復數相等的條件,是基礎題.10.B【解析】
根據集合中的元素,可得集合,然后根據交集的概念,可得,最后根據子集的概念,利用計算,可得結果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B本題考查集合的運算以及集合子集個數的計算,當集合中有元素時,集合子集的個數為,真子集個數為,非空子集為,非空真子集為,屬基礎題.11.C【解析】
畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.12.C【解析】試題分析:根據題意,當時,令,得;當時,令,得,故輸入的實數值的個數為1.考點:程序框圖.二、填空題:本題共4小題,每小題5分,共20分。13.;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.14.28【解析】
將已知式轉化為,則的展開式中的系數中的系數,根據二項式展開式可求得其值.【詳解】,所以的展開式中的系數就是中的系數,而中的系數為,展開式中的系數為故答案為:28.本題考查二項式展開式中的某特定項的系數,關鍵在于將原表達式化簡將三項的冪的形式轉化為可求的二項式的形式,屬于基礎題.15.【解析】
由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關系,進而可寫出半球的半徑與四棱錐體積的關系,進而求得結果.【詳解】設所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找幾何體中元素間的關系,或只畫內切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.16.【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結束所以答案應填:考點:1、程序框圖;2、定積分.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(I)證明見解析;(II)1【解析】
(I)過D作DE⊥BC于E,連接SE,根據勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=本題考查了線線垂直,線面夾角,意在考查學生的計算能力和空間想象能力.18.(1)(2)【解析】
(1)因為,所以,由余弦定理得,化簡得,可得,解得,又因為,所以.(6分)(2)因為,所以,則(當且僅當時,取等號).由(1)得(當且僅當時,取等號),解得.所以(當且僅當時,取等號),所以的周長的最小值為.19.(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】
(Ⅰ)根據莖葉圖求出滿足條件的概率即可;(Ⅱ)結合圖表得到6人中有2個人考核為優,從而求出滿足條件的概率即可;(Ⅲ)求出滿足的成績有16個,求出滿足條件的概率即可.【詳解】解:(Ⅰ)設這名學生考核優秀為事件,由莖葉圖中的數據可以知道,30名同學中,有7名同學考核優秀,所以所求概率約為(Ⅱ)設從圖中考核成績滿足的學生中任取2人,至少有一人考核成績優秀為事件,因為表中成績在的6人中有2個人考核為優,所以基本事件空間包含15個基本事件,事件包含9個基本事件,所以(Ⅲ)根據表格中的數據,滿足的成績有16個,所以所以可以認為此次冰雪培訓活動有效.本題考查了莖葉圖問題,考查概率求值以及轉化思想,是一道常規題.20.(1):;:.(2)【解析】
(1)由可得,由,消去參數,可得直線的普通方程為.由可得,將,代入上式,可得,所以曲線的直角坐標方程為.(2)由(1)得,的普通方程為,將其化為極坐標方程可得,當時,,,所以.21.(1)當時,直線l方程為x=-1;當時,直線l方程為y=(x+1)tanα;x2+y2=2x(2)或.【解析】
(1)對直線l的傾斜角分類討論,消去參數即可求出其普通方程;由,即可求出曲線C的直角坐標方程;(2)將直線l的參數方程代入曲線C的直角坐標方程,根據條件Δ=0,即可求解.【詳解】(1)當時,直線l的普通方程為x=-1;當時,消去參數得直線l的普通方程為y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即為曲線C的直角坐標方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直線l的傾斜角α為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 計算機網絡集成方案試題及答案
- 數據庫關系模型的應用實例試題及答案
- 嵌入式設備的電源管理設計試題及答案
- 下一代互聯網架構的趨勢解析試題及答案
- 行政管理中的領導與影響力試題及答案
- 海綿城市理念在公路設計中的應用試題及答案
- 公路防災減災措施考試試題及答案
- 小學小本研修管理制度
- 工廠檢測日常管理制度
- 學校餐廳職工管理制度
- 5.1基因突變和基因重組課件-高一下學期生物人教版必修2
- DB65∕T 3420-2012 瑪納斯碧玉(標準規范)
- 2025-2030年中國煤電行業市場深度發展趨勢與前景展望戰略研究報告
- 企業戰略規劃與盈利模式創新研究
- 2025年醫院感染控制試題及答案
- 浙江省溫州市環大羅山聯盟2024-2025學年高一下學期期中考試 英語 PDF版含答案
- 北森領導測評試題及答案
- 環境保護項目進度安排與保障措施
- 馬工程西方經濟學(精要本第三版)教案
- 【高考真題】2022年高考物理真題試卷-福建卷(含答案)
- 公路工程標準施工招標文件(2018年版)
評論
0/150
提交評論