




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024-2025學年江蘇省泰州市興化市八年級(上)期末數學試卷一、選擇題(本大題共6小題,每小題3分,共18分.在每小題所給出的四個選項中,恰有一項是符合題目要求的,請將正確選項的字母代號涂在答題卡相應位置上)1.(3分)下列調查中,最適合全面調查的是()A.檢查一枚用于發射衛星的運載火箭的各零部件 B.調查某款新能源車電池的使用壽命 C.了解全國中學生的視力情況 D.對2024年春節聯歡晚會滿意度的調查2.(3分)下列四組線段中,可以構成直角三角形的是()A.4,5,6 B.2,3,4 C.3,4,7 3.(3分)如圖,小明書上的三角形被墨跡污染了一部分,很快他就根據所學知識畫出一個與書上完全一樣的三角形,那么這兩個三角形完全一樣的依據是()A.SSS B.SAS C.SSA D.ASA4.(3分)已知△ABC的三邊長分別是3、4、5,則該三角形斜邊上的中線長是()A.2 B.2.5 C.3 D.3.55.(3分)甲、乙兩人沿相同路線由A地到B地勻速前進,兩地之間的路程為20km.兩人前進路程s(單位:km)與甲的前進時間t(單位:h)之間的對應關系如圖所示.根據圖象信息,下列說法正確的是()A.甲比乙晚出發1h B.乙全程共用2h C.乙比甲早到B地3h D.甲的速度是5km/h6.(3分)如圖,彈性小球從P(2,0)出發,沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第一次碰到正方形的邊時的點為P1,第二次碰到正方形的邊時的點為P2…,第n次碰到正方形的邊時的點為Pn,則P2024的坐標是()A.(5,3) B.(3,5) C.(2,0) D.(0,2)二、填空題(本大題共有10小題,每小題3分,共30分.請把答案直接寫在答題卡相應位置上)7.(3分)投擲一枚硬幣100次,其中“正面朝上”的有46次,則“正面朝上”的頻率是.8.(3分)等腰三角形的兩邊長分別為1和3,則三角形的周長為.9.(3分)在平面直角坐標系中,點(﹣3,2)關于y軸的對稱點的坐標是.10.(3分)2.026kg精確到0.1kg是kg.11.(3分)汽車油箱內存油50L,每行駛100km耗油10L,行駛過程中油箱內剩余油量yL與行駛路程xkm的函數表達式是.12.(3分)一個不透明的袋中裝有除顏色外其余均相同的8個黃球和4個黑球和若干個紅球,每次搖勻后隨機摸出一個球,記下顏色后再放回袋中,通過大量重復摸球試驗后,發現摸到紅球的頻率穩定于0.4,由此可估計袋中約有紅球個.13.(3分)函數y=kx與y=6﹣x的圖象如圖所示,則k=.14.(3分)如圖,已知點A(﹣3,4),將線段OA繞點A逆時針旋轉90°至AA′,則A′的坐標是.15.(3分)如圖,在△ABC中,∠C=90°,AB=5,BC=3,若點P在邊AC上運動,過點P作PQ⊥AB,垂足為Q,連接BP,則BP+PQ的最小值是.16.(3分)如圖,在直角坐標系中,已知AB∥x軸,AC=BC,A(﹣4,4),C(0,1),D(2,7).現在為方便居民生活,政府決定在一條筆直的公路邊上新建一個燃氣站P,該公路的函數表達式是直線y=x﹣1,從燃氣站P向C、D兩個中轉站分別鋪設管道,輸送燃氣.C、D兩個中轉站點之間有一個古建筑區△ABC,燃氣管道不能穿過該區域,為使鋪設管道的路線最短,則燃氣站P的坐標是.三、解答題(本大題共有10題,共102分.請在答題卡指定區域內作答,解答時應寫出必要的文字說明、證明過程或演算步驟)17.(12分)計算與求值:(1)計算:(?5)2(2)求x的值:(x+3)3=﹣27.18.(8分)有甲、乙兩只不透明的袋子,每只袋子中裝有紅球和黃球若干,各袋中所裝球的總個數相同,這些球除顏色外都相同.實踐組用甲袋、創新組用乙袋各自做摸球試驗:兩人一組,一人從袋中任意摸出1個球,另一人記下顏色后將球放回并攪勻,各組連續做這樣的試驗,將記錄的數據繪制成如下兩種條形統計圖:(1)圖能更好地反各組試驗的總次數,圖能更好地反映各組試驗摸到紅球的頻數(填“A”或“B”);(2)求實踐組摸到黃球的頻率;(3)實踐組摸到黃球的頻率創新組摸到黃球的頻率(填“大于”、“小于”或“等于”).19.(8分)如圖,∠C=∠D=90°,∠CBA=∠DAB.(1)求證:△ABC≌△BAD;(2)若∠DAB=70°,則∠CAB=°.20.(8分)如圖,直線l是一次函數y=kx+4的圖象,且直線l經過點(1,2).(1)求k的值;(2)若直線l與x軸、y軸分別交于A、B兩點,求△AOB的面積.21.(10分)如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點D,若BC=6,AB=10.(1)求AC的長;(2)過點D作DE⊥AB,垂足為E,求DE的長.22.(10分)甲、乙兩家旅行社推出兩日游優惠活動,兩家旅行社報價均為800元/人,且提供同樣的服務,但優惠辦法不同.甲旅行社的優惠辦法是:每人按報價的8折收費.乙旅行社的優惠辦法是:若人數不超過20人,每人按報價的9折收費;若人數超過20人,則超出部分每人按報價的7折收費.(1)若某單位報名參加兩日游的人數超過了20人,設報名參加兩日游的人數為x人,請寫出甲、乙兩家旅行社兩日游收費y甲、y乙(元)與x(人)之間的函數表達式;(2)若報名參加兩日游的人數確定為50人,請你通過計算,選擇收費較少的一家.23.(10分)如圖,∠BAD、∠ABE是△ABC的兩個外角.(1)用無刻度直尺和圓規分別作∠BAD和∠ABE的平分線,兩線交于點O;(保留作圖痕跡,不寫作法)(2)在(1)的條件下,連接CO,求證:CO平分∠ACB.24.(10分)如圖①,公路上有A、B、C三個車站,一輛汽車從A站以速度v1勻速駛向B站,到達B站后不停留,以速度v2勻速駛向C站,汽車行駛路程y(千米)與行駛時間x(小時)之間的函數圖象如圖②所示.(1)求整個行駛過程中y與x之間的函數關系式及x的取值范圍;(2)若汽車在某一段路程內剛好用50分鐘行駛了60千米,求這段路程開始時x的值.25.(12分)在△ABC中,∠C=90°,點O是AB的中點,點D是AC邊上一個動點,連接DO.(1)如圖①,當直線DO恰好垂直平分AB時,若BC=2,AC=3.①連接BD,求△BCD的周長;②求線段CD的長;③如圖②,在△ABC右側作∠ABE=∠ABC,過點A作AE∥BC交BE于點E,求線段BE的長.(2)如圖③,過點B作OD的垂線,垂足為H,連接HC,若BC=2,∠A=30°,在點D運動的過程中,HC的長是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.26.(14分)【問題導入】如圖①,在直線l上找一點P,如何使得PA+PB最小?小華同學的思路:作點A關于直線l的對稱點A′,連接BA′,與直線l交于點P.由對稱可得PA′=PA,所以PA+PB=PA′+PB≥A′B,當A′、P、B三點共線的時候,PA′+PB=A′B,此時PA+PB最小.如圖②,在直線l上找一點P,如何使得|PA﹣PB|最大?小明同學的思路:作點A關于直線l的對稱點A′,連接BA′并延長交直線l交于點P.由對稱可得PA′=PA,所以|PA﹣PB|=|PA′﹣PB|≤A′B,當A′、P、B三點共線的時候,|PA﹣PB|=A′B,此時|PA﹣PB|最大.可見,解此類問題的關鍵是將問題轉化為“兩點之間線段最短”來解決.【理解運用】(1)如圖③,直線y=12x+b上有點A(4,a)、B(﹣2,1),點P在x軸上運動,點Q在直線AB①求a、b的值;②當PA+PB最小時,求點P的坐標;③令t=QA﹣QB﹣PA﹣PB,當t的值最大時,求點Q的坐標及t的最大值.【深度探究】(2)在(1)的條件下,且滿足t=QA﹣QB﹣PA﹣PB,當t的值最大時,若點M、N分別是線段OP、OQ上的動點,且PM=ON,連接PN、MQ,當PN+MQ最小時,求點M的坐標.
2024-2025學年江蘇省泰州市興化市八年級(上)期末數學試卷參考答案與試題解析題號123456答案ADDBDC一、選擇題(本大題共6小題,每小題3分,共18分.在每小題所給出的四個選項中,恰有一項是符合題目要求的,請將正確選項的字母代號涂在答題卡相應位置上)1.(3分)下列調查中,最適合全面調查的是()A.檢查一枚用于發射衛星的運載火箭的各零部件 B.調查某款新能源車電池的使用壽命 C.了解全國中學生的視力情況 D.對2024年春節聯歡晚會滿意度的調查【解答】解:A、檢查一枚用于發射衛星的運載火箭的各零部件,適合全面調查,故本選項符合題意;B、調查某款新能源車電池的使用壽命,適宜采用抽樣調查,故本選項不符合題意;C、了解全國中學生的視力情況,適宜采用抽樣調查,故本選項不符合題意;D、對2024年春節聯歡晚會滿意度的調查,適宜采用抽樣調查,故本選項不符合題意;故選:A.2.(3分)下列四組線段中,可以構成直角三角形的是()A.4,5,6 B.2,3,4 C.3,4,7 【解答】解:A、∵42+52=41,62=36,∴42+52≠62,∴不能構成直角三角形,故A不符合題意;B、∵22+32=13,42=16,∴22+32≠42,∴不能構成直角三角形,故B不符合題意;C、∵(3)2+(7)2=10,42=16,∴(3)2+(7)2≠42,∴不能構成直角三角形,故C不符合題意;D、∵12+(2)2=3,(3)2=3,∴12+(2)2=(3)2,∴能構成直角三角形,故D符合題意;故選:D.3.(3分)如圖,小明書上的三角形被墨跡污染了一部分,很快他就根據所學知識畫出一個與書上完全一樣的三角形,那么這兩個三角形完全一樣的依據是()A.SSS B.SAS C.SSA D.ASA【解答】解:由圖可知,三角形兩角及夾邊可以作出,所以,依據是ASA.故選:D.4.(3分)已知△ABC的三邊長分別是3、4、5,則該三角形斜邊上的中線長是()A.2 B.2.5 C.3 D.3.5【解答】解:∵△ABC的三邊長分別是3、4、5,∴32+42=25,52=25,∴32+42=52,∴△ABC是直角三角形,∴該三角形斜邊上的中線長是2.5,故選:B.5.(3分)甲、乙兩人沿相同路線由A地到B地勻速前進,兩地之間的路程為20km.兩人前進路程s(單位:km)與甲的前進時間t(單位:h)之間的對應關系如圖所示.根據圖象信息,下列說法正確的是()A.甲比乙晚出發1h B.乙全程共用2h C.乙比甲早到B地3h D.甲的速度是5km/h【解答】解:甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由圖象知,甲出發1小時后乙才出發,乙到2小時后甲才到,故選:D.6.(3分)如圖,彈性小球從P(2,0)出發,沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第一次碰到正方形的邊時的點為P1,第二次碰到正方形的邊時的點為P2…,第n次碰到正方形的邊時的點為Pn,則P2024的坐標是()A.(5,3) B.(3,5) C.(2,0) D.(0,2)【解答】解:由題意得,點P1的坐標為(5,3),點P2的坐標為(3,5),點P3的坐標為(0,2),點P4的坐標為(2,0),點P5的坐標為(5,3),∵2024÷4=506,∴點P2024的坐標為(2,0),故選:C.二、填空題(本大題共有10小題,每小題3分,共30分.請把答案直接寫在答題卡相應位置上)7.(3分)投擲一枚硬幣100次,其中“正面朝上”的有46次,則“正面朝上”的頻率是0.46.【解答】解:∵投鄭一枚硬幣100次,其中“正面朝上”的有46次,∴“正面朝上”的頻率是46÷100=0.46.故答案為:0.46.8.(3分)等腰三角形的兩邊長分別為1和3,則三角形的周長為7.【解答】解:分兩種情況:當等腰三角形的腰長為1,底邊長為3時,∵1+1=2<3,∴不能組成三角形;當等腰三角形的腰長為3,底邊長為1時,∵3+1=4>3,∴三角形的周長=3+3+1=7;綜上所述:三角形的周長為7,故答案為:7.9.(3分)在平面直角坐標系中,點(﹣3,2)關于y軸的對稱點的坐標是(3,2).【解答】解:在平面直角坐標系中,點(﹣3,2)關于y軸的對稱點的坐標是(3,2),故答案為:(3,2).10.(3分)2.026kg精確到0.1kg是2.0kg.【解答】解:2.026kg精確到0.1kg是2.0千克,故答案為:2.0.11.(3分)汽車油箱內存油50L,每行駛100km耗油10L,行駛過程中油箱內剩余油量yL與行駛路程xkm的函數表達式是y=50﹣0.1x.【解答】解:汽車每行駛1km耗油0.1L,行駛xkm后耗油0.1xL.油箱內剩余油量yL等于初始油量50L減去耗油量0.1xL,所以函數表達式為:y=50﹣0.1x.故答案為:y=50﹣0.1x.12.(3分)一個不透明的袋中裝有除顏色外其余均相同的8個黃球和4個黑球和若干個紅球,每次搖勻后隨機摸出一個球,記下顏色后再放回袋中,通過大量重復摸球試驗后,發現摸到紅球的頻率穩定于0.4,由此可估計袋中約有紅球8個.【解答】解:∵通過大量重復摸球試驗后,發現摸到紅球的頻率穩定于0.4,∴可估計摸到紅球的概率為0.4,設袋中紅球的個數為x,根據題意,得:x8+4+x解得x=8,經檢驗:x=8是分式方程的解,所以可估計袋中約有紅球8個.故答案為:8.13.(3分)函數y=kx與y=6﹣x的圖象如圖所示,則k=2.【解答】解:∵一次函數y=6﹣x與y=kx圖象的交點橫坐標為2,∴4=6﹣2,解得:y=4,∴交點坐標為(2,4),代入y=kx,2k=4,解得k=2.故答案為:214.(3分)如圖,已知點A(﹣3,4),將線段OA繞點A逆時針旋轉90°至AA′,則A′的坐標是(1,7).【解答】解:過點A作y軸的平行線EF,交x軸于點N,再過點A′作EF的垂線,垂足為M,由旋轉可知,AO=AA′,∠A′AO=90°,∴∠A′AM+∠OAN=90°.又∵A′M⊥EF,AN⊥x軸,∴∠A′MA=∠ANO=90°,∴∠OAN+∠AON=90°,∴∠A′AM=∠AON.在△A′MA和△ANO中,∠A′MA=∠ANO∠A′AM=∠AON∴△A′MA≌△ANO(AAS),∴A′M=AN,MA=NO.∵點A的坐標為(﹣3,4),∴A′M=AN=4,MA=NO=3,∴4﹣3=1,4+3=7,∴點A′的坐標為(1,7).故答案為:(1,7).15.(3分)如圖,在△ABC中,∠C=90°,AB=5,BC=3,若點P在邊AC上運動,過點P作PQ⊥AB,垂足為Q,連接BP,則BP+PQ的最小值是245【解答】解:延長BC到D,使得CD=CB,過D作DQ⊥AB于Q,交AC于P,∴∠DQB=90°,∵∠C=90°,∴AC垂直平分BD,∴BP=DP,∴BP+PQ=DP+PQ≥DQ,此時DQ′為BP+PQ的最小值,∵∠C=90°,AB=5,BC=3,∴AC=A連接AD,則2S△ABD=BD?AC=AB?DQ,即:6×4=5DQ,解得:DQ=24故答案為:24516.(3分)如圖,在直角坐標系中,已知AB∥x軸,AC=BC,A(﹣4,4),C(0,1),D(2,7).現在為方便居民生活,政府決定在一條筆直的公路邊上新建一個燃氣站P,該公路的函數表達式是直線y=x﹣1,從燃氣站P向C、D兩個中轉站分別鋪設管道,輸送燃氣.C、D兩個中轉站點之間有一個古建筑區△ABC,燃氣管道不能穿過該區域,為使鋪設管道的路線最短,則燃氣站P的坐標是(103【解答】解:作點C(0,1)關于直線y=x﹣1的對稱點E,連接BE交直線y=x﹣1于點P,連接CP,因為燃氣管道不穿過△ABC,所以連接BD,此時管道路線最短,設AB交y軸于點F,直線y=x﹣1交x軸于點M,交y軸于點N,如圖所示,∵AB|x軸,∴CF⊥AB,∵CA=CB,∴AF=BF,∵A(﹣4,4),∴BF=AF=4,∴B(4,4),∵D(2,7)∴BD=(4?2令x=0得y=﹣1,∴N(0,1),令y=0得x﹣1=0,解得x=1,∴M(1,0),又∵C(0,1),∴在Rt△OCM中,OC=OM=1,在Rt△OMN中,ON=OM=1,由C、E對稱可知,PC=PE,CM=EM,∴BD+BP+PC=BD+BE=13∵CM=EM,C(0,1),M(1,0),∴xE+xC2=x∴xE=2﹣0=2,yE=0﹣1=﹣1,∴E(2,﹣1),設直線BE的解析式為:y=kx+b,代入點B、E的坐標,可得2k+b=?14k+b=4解得,k=5∴直線BE的解析式為:y=5聯立y=5解得x=10∴P(10故答案為:(10三、解答題(本大題共有10題,共102分.請在答題卡指定區域內作答,解答時應寫出必要的文字說明、證明過程或演算步驟)17.(12分)計算與求值:(1)計算:(?5)2(2)求x的值:(x+3)3=﹣27.【解答】解:(1)原式=5?2?=21(2)(x+3)3=﹣27,x+3=﹣3,x=﹣6.18.(8分)有甲、乙兩只不透明的袋子,每只袋子中裝有紅球和黃球若干,各袋中所裝球的總個數相同,這些球除顏色外都相同.實踐組用甲袋、創新組用乙袋各自做摸球試驗:兩人一組,一人從袋中任意摸出1個球,另一人記下顏色后將球放回并攪勻,各組連續做這樣的試驗,將記錄的數據繪制成如下兩種條形統計圖:(1)B圖能更好地反各組試驗的總次數,A圖能更好地反映各組試驗摸到紅球的頻數(填“A”或“B”);(2)求實踐組摸到黃球的頻率;(3)實踐組摸到黃球的頻率小于創新組摸到黃球的頻率(填“大于”、“小于”或“等于”).【解答】解:(1)B圖能更好地反映各組試驗的總次數,A圖能更好地反映各組試驗摸到紅球的頻數;故答案為:B,A.(2)實踐組摸到黃球的頻率=(500﹣372)÷500=0.256;(3)實踐組摸到黃球的頻率小于創新組摸到黃球的頻率(答案不唯一).19.(8分)如圖,∠C=∠D=90°,∠CBA=∠DAB.(1)求證:△ABC≌△BAD;(2)若∠DAB=70°,則∠CAB=20°.【解答】(1)證明:在△ABC和△BAD中,∠C=∠D=90°∠CBA=∠DAB∴△ABC≌△BAD(AAS);(2)解:∵∠DAB=70°,∠D=90°,∴∠DBA=90°﹣70°=20°,由(1)知△ABC≌△BAD,∴∠CAB=∠DBA=20°,故答案為:20.20.(8分)如圖,直線l是一次函數y=kx+4的圖象,且直線l經過點(1,2).(1)求k的值;(2)若直線l與x軸、y軸分別交于A、B兩點,求△AOB的面積.【解答】解:(1)把(1,2)代入y=kx+4,得k+4=2,解得k=﹣2;(2)當y=0時,﹣2x+4=0,解得x=2,則直線y=﹣2x+4與x軸的交點坐標為A(2,0).當x=0時,y=﹣2x+4=4,則直線y=﹣2x+4與y軸的交點坐標為B(0,4).所以△AOB的面積為1221.(10分)如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點D,若BC=6,AB=10.(1)求AC的長;(2)過點D作DE⊥AB,垂足為E,求DE的長.【解答】解:(1)在Rt△ABC中,由勾股定理得:AC=A(2)如圖,過點D作DE⊥AB于點E,∵∠C=90°,BD是∠ABC的平分線,∴DE=CD,設CD=x,則DE=x,∵S△ABC=S△ABD+S△BCD,∴12×6×8=12×6即24=3x+5x,解得x=3,即DE=3.22.(10分)甲、乙兩家旅行社推出兩日游優惠活動,兩家旅行社報價均為800元/人,且提供同樣的服務,但優惠辦法不同.甲旅行社的優惠辦法是:每人按報價的8折收費.乙旅行社的優惠辦法是:若人數不超過20人,每人按報價的9折收費;若人數超過20人,則超出部分每人按報價的7折收費.(1)若某單位報名參加兩日游的人數超過了20人,設報名參加兩日游的人數為x人,請寫出甲、乙兩家旅行社兩日游收費y甲、y乙(元)與x(人)之間的函數表達式;(2)若報名參加兩日游的人數確定為50人,請你通過計算,選擇收費較少的一家.【解答】解:(1)y甲=0.8×800x=640x,y乙=0.9×800×20+0.7×800(x﹣20)=560x+3200.答:y甲與x之間的函數表達式為y甲=640x,y乙與x之間的函數表達式為y乙=560x+3200.(2)當x=50時,y甲=640×50=32000,y乙=560×50+3200=31200,∵32000>31200,∴應該選擇乙旅行社.23.(10分)如圖,∠BAD、∠ABE是△ABC的兩個外角.(1)用無刻度直尺和圓規分別作∠BAD和∠ABE的平分線,兩線交于點O;(保留作圖痕跡,不寫作法)(2)在(1)的條件下,連接CO,求證:CO平分∠ACB.【解答】(1)解:圖形如圖所示:(2)證明:過點O作OH⊥CD于點H,OM⊥AB于點M,ON⊥CE于點N.∵AO平分∠BAD,OB平分∠ABE,∴OH=OM,OM=ON,∴OH=ON,∴OC平分∠ACB.24.(10分)如圖①,公路上有A、B、C三個車站,一輛汽車從A站以速度v1勻速駛向B站,到達B站后不停留,以速度v2勻速駛向C站,汽車行駛路程y(千米)與行駛時間x(小時)之間的函數圖象如圖②所示.(1)求整個行駛過程中y與x之間的函數關系式及x的取值范圍;(2)若汽車在某一段路程內剛好用50分鐘行駛了60千米,求這段路程開始時x的值.【解答】解:(1)由圖象可知,當0≤x≤3時,y=60x,當3<x≤4時,y=180+270?1804?3(x﹣3)=90∴y=60x(2)∵汽車在某一段路程內剛好用50分鐘行駛了60千米,∴60(3﹣x)+90(x+50解得x=2.5,∴這段路程開始時x的值為2.5.25.(12分)在△ABC中,∠C=90°,點O是AB的中點,點D是AC邊上一個動點,連接DO.(1)如圖①,當直線DO恰好垂直平分AB時,若BC=2,AC=3.①連接BD,求△BCD的周長;②求線段CD的長;③如圖②,在△ABC右側作∠ABE=∠ABC,過點A作AE∥BC交BE于點E,求線段BE的長.(2)如圖③,過點B作OD的垂線,垂足為H,連接HC,若BC=2,∠A=30°,在點D運動的過程中,HC的長是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.【解答】解:(1)①如圖1,∵直線DO恰好垂直平分AB,∴AD=BD,∵BC=2,AC=3,∴△BCD的周長=BC+CD+BD=BC+CD+AD=BC+AC=2+3=5;②設CD=x,則AD=BD=3﹣x,∵∠C=90°,∴CD2+BC2=BD2,∴x2+22=(3﹣x)2,∴x=5∴CD=5③如圖2,過點B作BF⊥AE于F,則BF=AC=3,AF=BC=2,設EF=a,則AE=a+2,∵AE∥BC,∴∠ABC=∠BAE,∵∠ABE=∠ABC,∴∠BAE=∠ABE,∴BE=AE=a+2,由勾股定理得:EF2+BF2=BE2,∴a2+32=(a+2)2,∴a=5∴BE=a+2=54+即BE的長是134(2)存在,如圖3,取OB的中點M,連接MH,∵BC=2,∠A=30°,∠ACB=90°,∴AB=2BC=4,∵O是AB的中點,∴OA=OB=2,∵BH⊥OD,∴∠BHD=90°,∴MH=12OB=OM=∴點H在以OB為直徑的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園超市調查管理制度
- 校外培訓教師管理制度
- 幼兒園線上運營與平臺建設協議
- 海洋生態系統服務功能與修復-洞察及研究
- 農村小區環境整治與綠化合作協議
- 歷年市場份額變化表
- 順特電氣設備面試題及答案
- php基礎考試題及答案
- 群眾意識面試題及答案
- 農村貧困地區特色農業發展合同
- 2023年黃大仙救世報
- (完整版)高考必備3500詞
- GB/T 14832-2008標準彈性體材料與液壓液體的相容性試驗
- GB/T 1185-2006光學零件表面疵病
- 工業管道工程工程量清單項目設置及計價
- 濟寧市城市介紹家鄉旅游攻略PPT
- 熊浩演講稿全
- 基于MATLAB的控制系統仿真及應用-第5章-基于MATLABSimulink的控制系統建模與仿真課件
- 巡檢培訓課件.ppt
- 北師大版五下書法《第6課戈字旁》課件
- 國家開放大學電大本科《設施園藝學》2023-2024期末試題及答案(試卷代號:1329)
評論
0/150
提交評論