




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
吉林省四平一中2024-2025學年高三下期中數(shù)學試題卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與拋物線C:交于A,B兩點,直線,且l與C相切,切點為P,記的面積為S,則的最小值為A. B. C. D.2.函數(shù)()的圖象的大致形狀是()A. B. C. D.3.函數(shù),,的部分圖象如圖所示,則函數(shù)表達式為()A. B.C. D.4.已知集合,則()A. B. C. D.5.已知集合,集合,則()A. B. C. D.6.設(shè)集合則()A. B. C. D.7.是拋物線上一點,是圓關(guān)于直線的對稱圓上的一點,則最小值是()A. B. C. D.8.《九章算術(shù)》是我國古代數(shù)學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機取一點,則此點取自內(nèi)切圓的概率是()A. B. C. D.9.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.10.在中,,,,若,則實數(shù)()A. B. C. D.11.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P212.已知函數(shù),則()A.2 B.3 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙、丙、丁四名同學報名參加淮南文明城市創(chuàng)建志愿服務(wù)活動,服務(wù)活動共有“走進社區(qū)”、“環(huán)境監(jiān)測”、“愛心義演”、“交通宣傳”等四個項目,每人限報其中一項,記事件為“4名同學所報項目各不相同”,事件為“只有甲同學一人報走進社區(qū)項目”,則的值為______.14.已知一組數(shù)據(jù),1,0,,的方差為10,則________15.已知函數(shù),則關(guān)于的不等式的解集為_______.16.記數(shù)列的前項和為,已知,且.若,則實數(shù)的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經(jīng)濟損失達52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風中造成的直接經(jīng)濟損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)臺風后該青年志愿者與當?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機抽取2戶進行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學期望.18.(12分)已知數(shù)列是等差數(shù)列,前項和為,且,.(1)求.(2)設(shè),求數(shù)列的前項和.19.(12分)已知點是拋物線的頂點,,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設(shè)點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.20.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)若,求曲線與的交點坐標;(2)過曲線上任意一點作與夾角為45°的直線,交于點,且的最大值為,求的值.21.(12分)已知,其中.(1)當時,設(shè)函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.22.(10分)已知圓,定點,為平面內(nèi)一動點,以線段為直徑的圓內(nèi)切于圓,設(shè)動點的軌跡為曲線(1)求曲線的方程(2)過點的直線與交于兩點,已知點,直線分別與直線交于兩點,線段的中點是否在定直線上,若存在,求出該直線方程;若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
設(shè)出坐標,聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點到直線的距離公式求得到的距離,得到的面積為,作差后利用導數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點到直線的距離從而.令當時,;當時,故,即的最小值為本題正確選項:本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導數(shù)或者利用函數(shù)值域的方法來求解最值.2.C【解析】
對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.識圖常用的方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來分析解決問題.3.A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導公式,屬于基礎(chǔ)題.4.B【解析】
計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.本題考查了集合的交集,意在考查學生的計算能力.5.D【解析】
可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調(diào)性,以及并集的運算.6.C【解析】
直接求交集得到答案.【詳解】集合,則.故選:.本題考查了交集運算,屬于簡單題.7.C【解析】
求出點關(guān)于直線的對稱點的坐標,進而可得出圓關(guān)于直線的對稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設(shè)點關(guān)于直線的對稱點為點,則,整理得,解得,即點,所以,圓關(guān)于直線的對稱圓的方程為,設(shè)點,則,當時,取最小值,因此,.故選:C.本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關(guān)于直線對稱性的應(yīng)用,考查計算能力,屬于中等題.8.C【解析】
利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應(yīng)用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運算能力.9.C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.10.D【解析】
將、用、表示,再代入中計算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運算,是一道中檔題.11.C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數(shù),屬于基礎(chǔ)題.12.A【解析】
根據(jù)分段函數(shù)直接計算得到答案.【詳解】因為所以.故選:.本題考查了分段函數(shù)計算,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)條件概率的求法,分別求得,再代入條件概率公式求解.【詳解】根據(jù)題意得所以故答案為:本題主要考查條件概率的求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.14.7或【解析】
依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.本題主要考查方差公式的應(yīng)用.15.【解析】
判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運用單調(diào)性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)遞增,,即,∴∴,即x>故答案為:本題考查函數(shù)的奇偶性和單調(diào)性的運用:解不等式,考查轉(zhuǎn)化思想和運算能力,屬于中檔題.16.【解析】
根據(jù)遞推公式,以及之間的關(guān)系,即可容易求得,再根據(jù)數(shù)列的單調(diào)性,求得其最大值,則參數(shù)的范圍可求.【詳解】當時,,解得.所以.因為,則,兩式相減,可得,即,則.兩式相減,可得.所以數(shù)列是首項為3,公差為2的等差數(shù)列,所以,則.令,則.當時,,數(shù)列單調(diào)遞減,而,,,故,即實數(shù)的取值范圍為.故答案為:.本題考查由遞推公式求數(shù)列的通項公式,涉及數(shù)列單調(diào)性的判斷,屬綜合困難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)3360元;(2)見解析【解析】
(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損失;(2)根據(jù)頻率分布直方圖計算隨機變量X的可能取值,再求X的分布列和數(shù)學期望值.【詳解】(1)記每個農(nóng)戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過1000元的農(nóng)戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過8000元的農(nóng)戶共有0.00003×2000×50=3(戶),隨機抽取2戶,則X的可能取值為0,1,2;計算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數(shù)學期望為E(X)=0×+1×+2×=.本題考查了頻率分布直方圖與離散型隨機變量的分布列與數(shù)學期望計算問題,屬于中檔題.18.(1)(2)【解析】
(1)由數(shù)列是等差數(shù)列,所以,解得,又由,解得,即可求得數(shù)列的通項公式;(2)由(1)得,利用乘公比錯位相減,即可求解數(shù)列的前n項和.【詳解】(1)由題意,數(shù)列是等差數(shù)列,所以,又,,由,得,所以,解得,所以數(shù)列的通項公式為.(2)由(1)得,,,兩式相減得,,即.本題主要考查等差的通項公式、以及“錯位相減法”求和的應(yīng)用,此類題目是數(shù)列問題中的常見題型,解答中確定通項公式是基礎(chǔ),準確計算求和是關(guān)鍵,易錯點是在“錯位”之后求和時,弄錯等比數(shù)列的項數(shù),能較好的考查考生的數(shù)形結(jié)合思想、邏輯思維能力及基本計算能力等.19.(1)不在,證明見詳解;(2)【解析】
(1)假設(shè)直線方程,并于拋物線方程聯(lián)立,結(jié)合韋達定理,計算,可得,然后驗證可得結(jié)果.(2)分別計算線段中垂線的方程,然后聯(lián)立,根據(jù)(1)的條件可得點的軌跡方程,然后可得焦點,結(jié)合拋物線定義可得,計算可得結(jié)果.【詳解】(1)設(shè)直線方程,根據(jù)題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設(shè)線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以本題考查直線于拋物線的綜合應(yīng)用,第(1)問中難點在于計算處,第(2)問中關(guān)鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯(lián)立方程,結(jié)合韋達定理,屬難題.20.(1),;(2)或【解析】
(1)將曲線的極坐標方程和直線的參數(shù)方程化為直角坐標方程,聯(lián)立方程,即可求得曲線與的交點坐標;(2)由直線的普通方程為,故上任意一點,根據(jù)點到直線距離公式求得到直線的距離,根據(jù)三角函數(shù)的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標方程為.當時,直線的普通方程為由解得或.從而與的交點坐標為,.(2)由題意知直線的普通方程為,的參數(shù)方程為(為參數(shù))故上任意一點到的距離為則.當時,的最大值為所以;當時,的最大值為,所以.綜上所述,或解題關(guān)鍵是掌握極坐標和參數(shù)方程化為直角坐標方程的方法,和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.21.(1)極大值,無極小值;(2).(3)見解析【解析】
(1)先求導,根據(jù)導數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導,再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問題得以解決;(3)取得到,取,可得,累加和根據(jù)對數(shù)的運算性和放縮法即可證明.【詳解】解:(1)當時,設(shè)函數(shù),則令,解得當時,,當時,所以在上單調(diào)遞增,在上單調(diào)遞減所以當時,函數(shù)取得極大值,即極大值為,無極小值;(2)因為,所以,因為在區(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當時,在區(qū)間上恒成立,當時,,設(shè),則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所以,即綜上所述.(3)由(2)可知當時,函數(shù)在區(qū)間上遞增,所以,即,取,則.所以所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中科學核心知識點解析
- 工程項目推進中的時間管理訣竅試題及答案
- 水利水電工程社會影響力試題及答案
- 2023 年注冊會計師《會計》(8 月 25 日第一場)考試及答案解析
- 2024水利水電工程設(shè)備管理考題試題及答案
- 移動通信基站設(shè)備維護與支持合同
- 智能化物流管理服務(wù)合同
- 農(nóng)村生態(tài)農(nóng)業(yè)技術(shù)合作框架協(xié)議
- 工程經(jīng)濟實務(wù)與決策試題及答案
- 物業(yè)智能管理系統(tǒng)推廣合作協(xié)議
- 影視特效與欄目包裝智慧樹知到期末考試答案2024年
- 如何有效地開展集體備課
- MOOC 工程經(jīng)濟學原理-東南大學 中國大學慕課答案
- 湖北省武漢市武昌區(qū)2022-2023學年六年級下學期期中數(shù)學試卷
- 經(jīng)濟博弈論(山東聯(lián)盟)智慧樹知到期末考試答案2024年
- 2024年廣東廣州交易集團有限公司招聘筆試參考題庫附帶答案詳解
- 【真題】2023年常州市中考道德與法治試卷(含答案解析)
- 《光學教程》第五版-姚啟鈞-第一章-幾何光學-課件
- 《中醫(yī)常用護理技術(shù)基礎(chǔ)》課件-一般護理-第二節(jié)生活起居護理
- 2024屆高考英語作文復習專項:讀后續(xù)寫“助人為樂”類范文5篇 講義素材
- 冷庫方案報價
評論
0/150
提交評論