




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省灤州第一中學2024-2025學年高三下學期期末統一檢測試題數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的圖象與軸交點的橫坐標構成一個公差為的等差數列,要得到函數的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位2.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.3.若復數,,其中是虛數單位,則的最大值為()A. B. C. D.4.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.5.已知函數,滿足對任意的實數,都有成立,則實數的取值范圍為()A. B. C. D.6.已知函數,的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.7.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-8.已知無窮等比數列的公比為2,且,則()A. B. C. D.9.已知,,,,則()A. B. C. D.10.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件11.已知且,函數,若,則()A.2 B. C. D.12.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知多項式的各項系數之和為32,則展開式中含項的系數為______.14.如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內作弧和,并將兩弧各五等分,分點依次為、、、、、以及、、、、、.一只螞蟻欲從點出發,沿正方體的表面爬行至,則其爬行的最短距離為________.參考數據:;;)15.已知函數,若對于任意正實數,均存在以為三邊邊長的三角形,則實數k的取值范圍是_______.16.滿足約束條件的目標函數的最小值是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為等差數列,為等比數列,的前n項和為,滿足,,,.(1)求數列和的通項公式;(2)令,數列的前n項和,求.18.(12分)某學生為了測試煤氣灶燒水如何節省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間的一組數據,且作了一定的數據處理(如下表),得到了散點圖(如下圖).表中,.(1)根據散點圖判斷,與哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數的回歸方程類型?(不必說明理由)(2)根據判斷結果和表中數據,建立關于的回歸方程;(3)若單位時間內煤氣輸出量與旋轉的弧度數成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?附:對于一組數據,其回歸直線的斜率和截距的最小二乘法估計值分別為,19.(12分)橢圓:的離心率為,點為橢圓上的一點.(1)求橢圓的標準方程;(2)若斜率為的直線過點,且與橢圓交于兩點,為橢圓的下頂點,求證:對于任意的實數,直線的斜率之積為定值.20.(12分)在直角坐標系中,曲線的參數方程為(為參數),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.21.(12分)已知橢圓:()的離心率為,且橢圓的一個焦點與拋物線的焦點重合.過點的直線交橢圓于,兩點,為坐標原點.(1)若直線過橢圓的上頂點,求的面積;(2)若,分別為橢圓的左、右頂點,直線,,的斜率分別為,,,求的值.22.(10分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數為,,,規定空集中元素的個數為.當時,求的值;利用數學歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】依題意有的周期為.而,故應左移.2.A【解析】
作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.3.C【解析】
由復數的幾何意義可得表示復數,對應的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復數的幾何意義可得,復數對應的點為,復數對應的點為,所以,其中,故選C本題主要考查復數的幾何意義,由復數的幾何意義,將轉化為兩復數所對應點的距離求值即可,屬于基礎題型.4.A【解析】
如圖設平面,球心在上,根據正四面體的性質可得,根據平面向量的加法的幾何意義,重心的性質,結合已知求出的值.【詳解】如圖設平面,球心在上,由正四面體的性質可得:三角形是正三角形,,,在直角三角形中,,,,,,因為為重心,因此,則,因此,因此,則,故選A.本題考查了正四面體的性質,考查了平面向量加法的幾何意義,考查了重心的性質,屬于中檔題.5.B【解析】
由題意可知函數為上為減函數,可知函數為減函數,且,由此可解得實數的取值范圍.【詳解】由題意知函數是上的減函數,于是有,解得,因此,實數的取值范圍是.故選:B.本題考查利用分段函數的單調性求參數,一般要分析每支函數的單調性,同時還要考慮分段點處函數值的大小關系,考查運算求解能力,屬于中等題.6.D【解析】
由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數的解析式,又因為當時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數的最小正周期,則,所以,當時,,所以是函數的一條對稱軸,故選:D本題主要考查利用和差公式恒等變形,以及考查三角函數的周期性和對稱性.7.C【解析】
直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發現∠QOx的大小,求得結果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.本題考查過定點的直線系問題,以及直線和圓的位置關系,是基礎題.8.A【解析】
依據無窮等比數列求和公式,先求出首項,再求出,利用無窮等比數列求和公式即可求出結果。【詳解】因為無窮等比數列的公比為2,則無窮等比數列的公比為。由有,,解得,所以,,故選A。本題主要考查無窮等比數列求和公式的應用。9.D【解析】
令,求,利用導數判斷函數為單調遞增,從而可得,設,利用導數證出為單調遞減函數,從而證出,即可得到答案.【詳解】時,令,求導,,故單調遞增:∴,當,設,,又,,即,故.故選:D本題考查了作差法比較大小,考查了構造函數法,利用導數判斷式子的大小,屬于中檔題.10.A【解析】
根據充分條件和必要條件的定義,結合線面垂直的性質進行判斷即可.【詳解】當m⊥平面α時,若l∥α”則“l⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l∥α”是“l⊥m”充分不必要條件,故選:A.本題主要考查充分條件和必要條件的判斷,結合線面垂直的性質和定義是解決本題的關鍵.難度不大,屬于基礎題11.C【解析】
根據分段函數的解析式,知當時,且,由于,則,即可求出.【詳解】由題意知:當時,且由于,則可知:,則,∴,則,則.即.故選:C.本題考查分段函數的應用,由分段函數解析式求自變量.12.A【解析】
根據題意依次計算得到答案.【詳解】根據題意知:,,故,,.故選:.本題考查了數列值的計算,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
令可得各項系數和為,得出,根據第一個因式展開式的常數項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數項的積的和即為展開式中含項,可得解.【詳解】令,則得,解得,所以展開式中含項為:,故答案為:本題主要考查了二項展開式的系數和,二項展開式特定項,賦值法,屬于中檔題.14.【解析】
根據空間位置關系,將平面旋轉后使得各點在同一平面內,結合角的關系即可求得兩點間距離的三角函數表達式.根據所給參考數據即可得解.【詳解】棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內作弧和.將平面繞旋轉至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉至與平面共面的位置,將繞旋轉至與平面共面的位置,如下圖所示:則,所以;因為,且由誘導公式可得,所以最短距離為,故答案為:.本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內求解的方法,三角函數誘導公式的應用,綜合性強,屬于難題.15.【解析】
根據三角形三邊關系可知對任意的恒成立,將的解析式用分離常數法變形,由均值不等式可得分母的取值范圍,則整個式子的取值范圍由的符號決定,故分為三類討論,根據函數的單調性求出函數值域,再討論,轉化為的最小值與的最大值的不等式,進而求出的取值范圍.【詳解】因為對任意正實數,都存在以為三邊長的三角形,故對任意的恒成立,,令,則,當,即時,該函數在上單調遞減,則;當,即時,,當,即時,該函數在上單調遞增,則,所以,當時,因為,,所以,解得;當時,,滿足條件;當時,,且,所以,解得,綜上,,故答案為:本題考查參數范圍,考查三角形的構成條件,考查利用函數單調性求函數值域,考查分類討論思想與轉化思想.16.-2【解析】
可行域是如圖的菱形ABCD,代入計算,知為最小.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2).【解析】
(1)設的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數項分一組用裂項相消法求和,偶數項分一組用等比數列求和公式求和.【詳解】(1)設的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數時,,為偶數時,,∴.本題考查求等差數列和等比數列的通項公式,考查分組求和法及裂項相消法、等差數列與等比數列的前項和公式,求通項公式采取的是基本量法,即求出公差、公比,由通項公式前項和公式得出相應結論.數列求和問題,對不是等差數列或等比數列的數列求和,需掌握一些特殊方法:錯位相減法,裂項相消法,分組(并項)求和法,倒序相加法等等.18.(1)選取更合適;(2);(3)時,煤氣用量最小.【解析】
(1)根據散點圖的特點,可得更適合;(2)先建立關于的回歸方程,再得出關于的回歸方程;(3)寫出函數關系,利用基本不等式得出最小值及其成立的條件.【詳解】(1)選取更適宜作燒水時間關于開關旋鈕旋轉的弧度數的回歸方程類型;(2)由公式可得:,,所以所求回歸直線方程為:;(3)根據題意,設,則煤氣用量,當且僅當時,等號成立,即時,煤氣用量最小.此題考查根據題意求回歸方程,利用線性回歸方程的求法得解,結合基本不等式求最值.19.(1);(2)證明見解析【解析】
(1)運用離心率公式和點滿足橢圓方程,解得,,進而得到橢圓方程;(2)設直線,代入橢圓方程,運用韋達定理和直線的斜率公式,以及點在直線上滿足直線方程,化簡整理,即可得到定值.【詳解】(1)因為,所以,①又橢圓過點,所以②由①②,解得所以橢圓的標準方程為.(2)證明設直線:,聯立得,設,則易知故所以對于任意的,直線的斜率之積為定值.本題考查橢圓的方程的求法,注意運用離心率公式和點滿足橢圓方程,考查直線方程和橢圓方程聯立,運用韋達定理和直線的斜率公式,化簡整理,考查運算能力,屬于中檔題.20.(1),;(2).【解析】
(1)在曲線的參數方程中消去參數,可得出曲線的普通方程,將曲線的極坐標方程變形為,進而可得出曲線的直角坐標方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數方程得,.所以,曲線的普通方程為,將曲線的極坐標方程變形為,所以,曲線的直角坐標方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,,因此,的面積為最大值為.本題考查曲線的參數方程、極坐標方程與普通方程之間的相互轉換,同時也考查了直線截圓所形成的三角形面積最值的計算,考查計算能力,屬于中等題.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年行為經濟學導論考試卷及答案
- SOF-436-生命科學試劑-MCE
- RMC-5127-生命科學試劑-MCE
- 2025年生態文明與可持續發展政策分析考試試卷及答案
- 2025年人工智能行業人才招聘考試試題及答案
- 2025年基礎數學能力測試試卷及答案
- 2025年酒店管理師資格考試試卷及答案
- 2025年法考筆試模擬試題及答案
- 藝術鑒賞進階:繪畫技巧與風格欣賞課教案
- 生活改變了我1500字(14篇)
- Module 3 Unit 1 Do you like bananas(說課稿)-2024-2025學年外研版(一起)英語二年級上冊
- 外賣代理授權合同范例
- 白酒寄售合同協議書范文模板
- 歷代中醫名人
- 垃圾滲濾液處理站運維及滲濾液處理投標方案(技術方案)
- 國家開放大學本科《商務英語4》一平臺機考真題及答案(第二套)
- JG-T 568-2019 高性能混凝土用骨料
- 變電站一鍵順控改造技術規范(試行)
- 光儲充一體化充電站設計方案
- JTT 854-2013 公路橋梁球型支座規格系列
- 《公路橋涵施工技術規范》JTGT3650-2020
評論
0/150
提交評論