




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題07相似三角形的基本模型(K字型)
【模型說明】
“一線三等角”型的圖形,因?yàn)橐粭l直線上有三個(gè)相等的角,一般就會(huì)有兩個(gè)三角形的“一
對(duì)角相等“,再利用平角為180。,三角形的內(nèi)角和為180。,就可以得到兩個(gè)三角形的另外
一對(duì)角也相等,從而得到兩個(gè)三角形相似.
1)一線三等角模型(同側(cè)型)
(銳角型)(直角型)(鈍角型)
條件:如圖,NI=/2=/3,結(jié)論:AACEs叢BED.
2)一線三等角模型(異側(cè)型)
條件:如圖,Z7=Z2=Z3,結(jié)論:AADEs^BEC.
3)一線三等角模型(變異型)
①特殊中點(diǎn)型:條件:如圖1,若C為的中點(diǎn),結(jié)論:AACEsABEDsMCD.
②一線三直角變異型1:條件:如圖2,ZABD=ZAFE=ZBDE^90°.結(jié)論:
AABCsABDEsABFCs4AFB.
③一線三直角變異型2:條件:如圖3,/ABD=/ACE=/BDE=90°.結(jié)論:
AABMSANDESANCM.
【例題精講】
例1.(基本模型)【感知】如圖①,在四邊形A8C。中,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、
3重合),ZA=NB=NDPC=90°.易證△ZMPsZkpBc.(不需要證明)
【探究】如圖②,在四邊形A8C。中,點(diǎn)尸在邊AB上(點(diǎn)P不與點(diǎn)A、8重合),
ZA=ZB=ZDPC.若尸D=4,PC=8,BC=6,求AP的長(zhǎng).
【拓展】如圖③,在“BC中,AC=BC=8,AB=12,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、
8重合),連結(jié)CP,作NCPE=NA,PE與邊BC交于點(diǎn)E,當(dāng)是等腰三角形時(shí),直
接寫出AP的長(zhǎng).
圖①圖③
例2.(培優(yōu)綜合1)如圖,在矩形ABC。中,BC=6,AB=2,RtABEF的頂點(diǎn)E在邊CO
或延長(zhǎng)線上運(yùn)動(dòng),且團(tuán)8£尸=90。,EF=^BE,DF=M,則BE=.
例3.(培優(yōu)綜合2)已知0ABe和回。CE中,AB^AC,DC=DE,BF=EF,點(diǎn)、B,C,E都
在同一直線上,且0ABe和BDCE在該直線同側(cè).
圖②
(1)如圖①,若SR4C=^COE=90。,請(qǐng)猜想線段AP與之間的數(shù)量關(guān)系和位置關(guān)系,
并證明你的猜想;
(2)如圖②,若SBAC=60。,0CD£=12O°,請(qǐng)直接寫出線段AF與。尸之間的數(shù)量關(guān)系和
位置關(guān)系;
(3)如圖③,若SBAC=a,fflCDE=180°-a,S.BOCE,請(qǐng)直接寫出線段AB與。尸之間
的數(shù)量關(guān)系和位置關(guān)系(用含a的式子表示).
例4.(培優(yōu)綜合3)國(guó)如圖1,點(diǎn)C在線段AB上,點(diǎn)D、E在直線AB同側(cè),SA=EDCE=0CBE,
DC=CE.求證:AC=BE.
回如圖2,點(diǎn)C在線段AB上,點(diǎn)D、E在直線AB同側(cè),回A=IBDCE=EICBE=90。.
ACAD16
①求證:一=—;②連接BD,若回ADC=I3ABD,AC=3,BC=—,求tanEICDB的值;
BEBC3
國(guó)如圖3,在EIABD中,點(diǎn)C在AB邊上,且IBADC=E1ABD,點(diǎn)E在BD邊上,連接CE,EIBCE
+EBAD=180°,AC=3,BC=y,CE=y,直接與出訪的值.
Si圖2圖3
例5.(與反比例函數(shù)綜合)如圖,在矩形AO3C中,03=4,。4=3,分別以。8、所
在直線為x軸和)軸,建立如圖所示的平面直角坐標(biāo)系,歹是邊BC上的一個(gè)動(dòng)點(diǎn)(不與8、
C重合),過尸點(diǎn)的反比例函數(shù)>=4左>0)的圖象與AC邊交于點(diǎn)E,將△CEF沿M對(duì)折
X
后,C點(diǎn)恰好落在。3上的點(diǎn)。處,則%的值為.
例6.(與二次函數(shù)綜合)如圖,拋物線》=依2+a(°片0)過點(diǎn)4(4,0)和點(diǎn)5(1,-3),其頂點(diǎn)
為點(diǎn)C,連接AB,點(diǎn)D在拋物線上A、C兩點(diǎn)之間,過點(diǎn)D作。尸,x軸,垂足為點(diǎn)F,DF
與AB交于點(diǎn)E.
(1)求此拋物線的解析式.
(2)連接AD、BD,設(shè)△ABD的面積為S,點(diǎn)D的橫坐標(biāo)為m,求S關(guān)于m的函數(shù)關(guān)系式
并求出S的最大值.
(3)點(diǎn)M在坐標(biāo)軸上,試探究平面內(nèi)是否存在點(diǎn)N,使點(diǎn)A、B、M、N為頂點(diǎn)的四邊形是
矩形,若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
課后訓(xùn)練
1.如圖,在反比例函數(shù)>=士的圖象上有一動(dòng)點(diǎn)A,連接AO并延長(zhǎng)交圖象的另一支于點(diǎn)8,
X
k
在第二象限內(nèi)有一點(diǎn)。,滿足AC=3C,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)。始終在函數(shù)y=—的圖象上運(yùn)
x
動(dòng),若A生C=囪L,則%的值為()
AO
A.-6B.-12C.-18D.-24
2.如圖,在矩形ABCD中,AB=4,AD=5,E、F、G、H分別為矩形邊上的點(diǎn),HF
過矩形的中心。,且上加=AD.E為AB的中點(diǎn),G為CD的中點(diǎn),則四邊形跖GF的周長(zhǎng)
為()
A.375B.675C.8出D.6^/3
3.如圖,在Rt^ABC中,NACB=90°,點(diǎn)。在A3上,連接CO,ZADC=2ZA,AC=4,
BC=5,貝1|線段CD=
_2
4.如圖,AAO8是直角三角形,ZAOB=90°,03=204,點(diǎn)A在反比例函數(shù)y=-的圖象
x
k
上.若點(diǎn)B在反比例函數(shù)y=*的圖象上,則k的值為
5.如圖,已知。是等邊AABC邊上的一點(diǎn),現(xiàn)將AABC折疊,使點(diǎn)C與。重合,折痕
為EF,點(diǎn)、E、尸分別在AC和8C上.如果AD:£B=2:3,則CE:CF的值為.
6.已知在RtAABC中,Z5AC=90°,AB=2,AC=4,。為3c邊上的一點(diǎn).過點(diǎn)。作
射線DE1DF,分別交邊A3、AC于點(diǎn)E、F.
DE
(1)當(dāng)。為BC的中點(diǎn),且。E1/W、DF1AC時(shí),如圖1,-=_______:
DF
DF
(2)若。為BC的中點(diǎn),將NED尸繞點(diǎn)。旋轉(zhuǎn)到圖2位置時(shí),巖=_______;
DF
(3)若改變點(diǎn)。到圖3的位置,且胃CD=生m時(shí),求D蕓F的值.
BDnDF
7.如圖,在中,0ACB=9OO,—=—,CZM48于點(diǎn)。,點(diǎn)E是直線AC上一動(dòng)點(diǎn),
ACn
連接DE,過點(diǎn)。作即SED,交直線8C于點(diǎn)凡
(1)探究發(fā)現(xiàn):
如圖1,若機(jī)=",點(diǎn)E在線段AC上,則D冬F(xiàn)=_____;
DF
(2)數(shù)學(xué)思考:
①如圖2,若點(diǎn)E在線段AC上,則?盤=_____(用含根,〃的代數(shù)式表示);
DF
②當(dāng)點(diǎn)£在直線AC上運(yùn)動(dòng)時(shí),①中的結(jié)論是否仍然成立?請(qǐng)僅就圖3的情形給出證明;
(3)拓展應(yīng)用:若4。=君,BC=2y/5,DF=4丘,請(qǐng)直接寫出CE的長(zhǎng).
8.等邊AA8C邊長(zhǎng)為6,尸為BC上一點(diǎn),含30。、60。的直角三角板60。角的頂點(diǎn)落在點(diǎn)P
上,使三角板繞尸點(diǎn)旋轉(zhuǎn).
(1)如圖1,當(dāng)P為的三等分點(diǎn),且時(shí),判斷AEPP的形狀;
⑵在(1)問的條件下,F(xiàn)E、PB的延長(zhǎng)線交于點(diǎn)G,如圖2,求AEG3的面積;
⑶在三角板旋轉(zhuǎn)過程中,若CF=AE=2,(CF#BP),如圖3,求PE的長(zhǎng).
9.(1)問題
如圖1,在四邊形ABCD中,點(diǎn)尸為AB上一點(diǎn),當(dāng)NOPC=NA=N3=90。時(shí),求證:
ADBC^APBP.
(2)探究
若將90。角改為銳角(如圖2),其他條件不變,上述結(jié)論還成立嗎?說明理由.
(3)應(yīng)用
如圖3,在AABC中,A3=2應(yīng),4=45。,以點(diǎn)A為直角頂點(diǎn)作等腰RtA4DE.點(diǎn)。在
8C上,點(diǎn)E在AC上,點(diǎn)/在BC上,且NEFD=45。,若CE=非,求8的長(zhǎng).
圖2圖3
10.(1)問題發(fā)現(xiàn):如圖1,ZABC=a,將邊AC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a得到線段CE,在射
線上取點(diǎn)。,使得NCDE=e.請(qǐng)求出線段與DE的數(shù)量關(guān)系;
(2)類比探究:如圖2,若&=90。,作/ACE=90。,且CE=;AC,其他條件不變,則線
段3c與DE的數(shù)量關(guān)系是否發(fā)生變化?如果變化,請(qǐng)寫出變化后的數(shù)量關(guān)系,并給出證明;
(3)拓展延伸:如圖3,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E是邊AD上一點(diǎn),且AE=2,把線
段CE逆時(shí)針旋轉(zhuǎn)90。得到線段政,連接所,直接寫出線段的長(zhǎng).
圖1圖2圖3
2Q
11.如圖,在平面直角坐標(biāo)系中,。為坐標(biāo)原點(diǎn),拋物線"與尤2-2x+§交無軸于4、B兩
點(diǎn),點(diǎn)C在拋物線上,且點(diǎn)C的橫坐標(biāo)為-1,連接交y軸于點(diǎn)Z).
圖1圖2
(1)如圖1,求點(diǎn)。的坐標(biāo);
⑵如圖2,點(diǎn)P在第二象限內(nèi)拋物線上,過點(diǎn)尸作尸G0X軸于G,點(diǎn)E在線段PG上,連接
AE,過點(diǎn)E作EF^AE交線段于凡若EF=AE,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PE的長(zhǎng)為d,
求1與f的函數(shù)關(guān)系式;
⑶如圖3,在(2)的條件下,點(diǎn)X在線段。2上,連接CE、EH,若EICE尸=&4即,EH-CE=
—AH,求點(diǎn)尸的坐標(biāo).
3
12.如圖,矩形ABC。中,E為邊上一點(diǎn)(不與點(diǎn)A、D重合),EF3BE交CD于點(diǎn)尸.
(1)求證:EAED=ABDF-,
(2)若BE平分0A2Z),點(diǎn)G為BC中點(diǎn),AG交BE于點(diǎn)K,反為AB邊上一點(diǎn),回BEH=45。,
BD交EF于點(diǎn)J,當(dāng)也=!時(shí),求旦;
BH5EK
(3)若AB=BC,點(diǎn)K為線段BE的三等分點(diǎn)(8KCEK),點(diǎn)J為射線E尸上一點(diǎn),且EK
AF1
=EJ,當(dāng);「=_________時(shí)(直接寫結(jié)果),tan即〃石=
ED2
專題07相似三角形的基本模型(K字型)
【模型說明】
“一線三等角”型的圖形,因?yàn)橐粭l直線上有三個(gè)相等的角,一般就會(huì)有兩個(gè)三角形的“一
對(duì)角相等”,再利用平角為180。,三角形的內(nèi)角和為180。,就可以得到兩個(gè)三角形的另外
一對(duì)角也相等,從而得到兩個(gè)三角形相似.
1)一線三等角模型(同側(cè)型)
(銳角型)(直角型)(鈍角型)
條件:如圖,/1=/2=/3,結(jié)論:4ACEsABED.
2)一線三等角模型(異側(cè)型)
條件:如圖,Z7=Z2=Z3,結(jié)論:AADEsABEC.
3)一線三等角模型(變異型)
①特殊中點(diǎn)型:條件:如圖1,若C為的中點(diǎn),結(jié)論:AACEsABEDsAECD.
②一線三直角變異型1:條件:如圖2,ZABD=ZAFE=ZBDE=90°.結(jié)論:
AABCsABDEsABFCs4AFB.
③一線三直角變異型2:條件:如圖3,/ABD=/ACE=/BDE=90°.結(jié)論:
△ABMsANDESANCM.
【例題精講】
例1.(基本模型)【感知】如圖①,在四邊形中,點(diǎn)P在邊AB上(點(diǎn)尸不與點(diǎn)A、
2重合),ZA=NB=NDPC=90°.易證△ZMPs^pgc.(不需要證明)
【探究】如圖②,在四邊形ABC。中,點(diǎn)尸在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),
ZA=ZB=ZDPC.若尸£>=4,PC=8,BC=6,求AP的長(zhǎng).
【拓展】如圖③,在44BC中,AC=3C=8,AB=12,點(diǎn)P在邊A8上(點(diǎn)P不與點(diǎn)A、
8重合),連結(jié)CP,作NCPE=NA,PE與邊BC交于點(diǎn)、E,當(dāng)是等腰三角形時(shí),直
接寫出AP的長(zhǎng).
圖③
【分析】探究:根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可;
拓展:證明“。瑯的出,分CP=CE、PC=PE、EC=EP三種情況,根據(jù)相似三角形的性質(zhì)計(jì)
算即可.
【詳解】探究:證明:EI/DP3是△APD的外角,
EZDPB=NA+ZPDA,
即NDPC+NCPB=ZA+/PDA,
SZA^ZDPC,
SZPDA=ZCPB,
X0ZA=ZB,
回4Ps△pg,
PDAP
團(tuán)---=---
PCBC
EPD=4,PC=8,BC=6,
4AP
團(tuán)一=---
86
解得:AP=3;
拓展:SAC=BC,
fflEL4=0B,
E0CPB是A4PC的外角,
EBCP8=EL4+EIPCA,^CPE+SEPB^SA+SPCA,
釀A二團(tuán)CPE,
團(tuán)團(tuán)AC尸二團(tuán)BPS,
的4二團(tuán)3,
m\CP^BPE,
當(dāng)。尸二CE時(shí),國(guó)CPE二國(guó)CEP,
團(tuán)團(tuán)匿尸〉姐,團(tuán)。尸氏她二團(tuán)8,
團(tuán)CP=CE1不成立;
當(dāng)POPE時(shí),及4。尸團(tuán)團(tuán)5尸石,
貝ljPB=AC=8f
^AP=AB-PB=12-8=4;
當(dāng)ECXEP時(shí),^CPE^ECP,
釀樂團(tuán)CPE,
團(tuán)團(tuán)EC尸二團(tuán)3,
⑦PC=PB,
^ACP^BPE,
ACAPPC8U-PBPB
團(tuán)--------=----,&RPn---=-------,解得:PB],
BPBEEPPBBE8—BE
^AP=AB-PB=12——=——,
33
綜上所述:回。尸£是等腰三角形時(shí),AP的長(zhǎng)為4或手20.
【點(diǎn)睛】本題考查的是相似三角形的判定和性質(zhì)、等腰三角形的性質(zhì)、三角形的外角性質(zhì),
靈活運(yùn)用分情況討論思想是解題的關(guān)鍵.
例2.(培優(yōu)綜合1)如圖,在矩形A5CD中,BC=6,AB=2,R53E尸的頂點(diǎn)片在邊CD
或延長(zhǎng)線上運(yùn)動(dòng),且回8EF=90。,EF=(BE,DF=M,則BE=.
【答案】3百.
【分析】過F作FGE1CD,交CD的延長(zhǎng)線于G,依據(jù)相似三角形的性質(zhì),即可得到FG=|EC,
GE=2=CD;設(shè)EC=x,則DG=x,FG=gx,再根據(jù)勾股定理,即可得至UCE2=9,最后依
據(jù)勾股定理進(jìn)行計(jì)算,即可得出BE的長(zhǎng).
【詳解】如圖所示,過尸作PG0C£>,交CQ的延長(zhǎng)線于G,貝崛G=90。,
回四邊形ABC。是矩形,
aaC=90°,AB=CD=2,
又aaBE/=90°,
E0FEG+0BEC=90°=^EBC+^BEC,
0fflF£G=0£BC,
又EHC=EIG=90°,
00BC£00EGF,
FGGEEFRnFGGE1
ECCBBEEC63
0FG=-£C,GE=2=CD,
3
回。G=EC,
設(shè)EC=x,則。G=x,FG=^x,
回Rt回陽(yáng)G中,F(xiàn)G2+DG2=DF2,
0((x)2+X2=()2,解得/=9,
即C郎=9,
0Rt0BCE中,BE=7CE2+BC2=J9+36=375,
故答案為:3下.
【點(diǎn)睛】本題主要考查了相似三角形的判定與性質(zhì)以及勾股定理的運(yùn)用,在判定兩個(gè)三角形
相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,
尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形;或依據(jù)基本圖形對(duì)圖形進(jìn)行分
解、組合;或作輔助線構(gòu)造相似三角形.
例3.(培優(yōu)綜合2)已知0ABe和回。CE中,AB=AC,DC=DE,BF=EF,點(diǎn)、B,C,E都
在同一直線上,且0ABe和SDCE在該直線同側(cè).
A
A
(I)如圖①,若aBAC=13CZ)£=90。,請(qǐng)猜想線段Ab與。尸之間的數(shù)量關(guān)系和位置關(guān)系,
并證明你的猜想;
(2)如圖②,若SR4C=60。,0CnE=12O°,請(qǐng)直接寫出線段AF與。尸之間的數(shù)量關(guān)系和
位置關(guān)系;
(3)如圖③,若SBAC=a,fflCDE=180°-a,S.BOCE,請(qǐng)直接寫出線段”與。尸之間
的數(shù)量關(guān)系和位置關(guān)系(用含a的式子表示).
【答案】(1)4尸=DF,AFWF,證明見解析;(2)AF=^>DF,AFA.DF,證明見解析;(3)
AF=DF-tan((90°-1?),AF±DF.
【分析】(1)如圖①中,結(jié)論:AF=DF,A用DF.證明△AHFB3日。(SAS),可得結(jié)論;
(2)如圖②中,結(jié)論:AF=^/3DF,AF±DF.證明AA”用EIE/D,可得結(jié)論;
(3)如圖③中,結(jié)論:AF=DF-tan((90°-1a),AFLDF,證明方法類似(2).
【詳解】解:(1)如圖①中,結(jié)論:AF=DF,AF^DF.
理由:過點(diǎn)A作于氏過點(diǎn)。作ZVMC于J.
圖①
0AB=AC,DC=DE,EBAC=0CDE=9O°,
^BH=CH,CJ=JE,
^AH=BH=CH,DJ=CJ=JE,
^BF=FE,
0HJ=BF=EF,
S\BH^FJ=AH,FH=JE=DJ,
E0AHF=0FJD=9O°,
EBA印迥MJD(SAS),
^\AF=FD,^HAF=^\DFJf
00MH+[?]AFH=9OO,
團(tuán)團(tuán)AF77+回DFV=90°,
00AF£)=9O°,BPAF^DF;
(2)如圖②中,結(jié)論:AF=y/3DF,AF±DF.
圖②
理由:過點(diǎn)4作人”團(tuán)BC于H,過點(diǎn)。作D龍1EC于J.
^\AB=ACf團(tuán)84060°,
StZLABC是等邊三角形,
aBH=CH,AH=6BH,
團(tuán)。C=DE,團(tuán)CDE=120°,
0C/=J5,團(tuán)DEC二團(tuán)。CE=30°,
國(guó)JE=6DJ,
團(tuán)8F=FE,
國(guó)HJ=BF=EF,
^BH=FJfHF=JE,
出AH=6FJ,FH=6DJ,
AHHFr-
團(tuán)——=——=。3,
FJDJ
團(tuán)MHF=團(tuán)E/D=90°,
團(tuán)MH用回E/D,
AFAHr-
0——=——二。3,團(tuán)H4F二團(tuán)DE/,
DFFJ
團(tuán)團(tuán)E4H+MFH=90°,
團(tuán)MFH+回。日=90°,
團(tuán)MFO=90°,BPAF^DF,
^AF=^DF,八用DF;
(3)如圖③中,結(jié)論:AF=DF-tan((90°-1a),AFLDF,
理由:過點(diǎn)八作AH團(tuán)BC于H,過點(diǎn)。作DJI亞C于J.
圖③
W\B=AC,團(tuán)BZC=a,
國(guó)BH=CH,AH=BH-tan(90°一]。),
回DC=DE,0CDE=18O°-a,
團(tuán)C/=JE,JE=DJ.tan(900-Ja),
團(tuán)8F=FE,
WJ=BF=EF,
國(guó)BH=FJ,HF=JE,
^AH=FJ-tan(90°-1a),FH=DJ-tan(90°
AHHF…01、
團(tuán)---=---=tan(90——a),
FJDJ2
團(tuán)MHF二團(tuán)日。=90°,
團(tuán)骷H用回E/。,
A尸AH1
田——二——=tan(90°一一a),^\HAF=^DFJ,
DFFJ2
團(tuán)團(tuán)E4H+MFH=90°,
團(tuán)MFH+團(tuán)。日=90°,
團(tuán)MFD=90°,BPAF^IDF,
回AF=DF-tan((90°一ga),AF^\DF.
【點(diǎn)睛】本題屬于三角形綜合題,考查了等邊三角形的性質(zhì),等腰直角三角形的性質(zhì),全等
三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)正確尋找全等三
角形或相似三角形解決問題.
例4.(培優(yōu)綜合3)團(tuán)如圖1,點(diǎn)C在線段AB上,點(diǎn)D、E在直線AB同側(cè),回A=MCE=MBE,
DC=CE.求證:AC=BE.
回如圖2,點(diǎn)C在線段AB上,點(diǎn)D、E在直線AB同側(cè),回A=@DCE=[3CBE=90°.
ACAD16
①求證:一=—;②連接BD,若回ADC=EIABD,AC=3,BC=—,求tanEICDB的值;
一BEBC3
團(tuán)如圖3,在國(guó)ABD中,點(diǎn)C在AB邊上,且回ADC=MBD,點(diǎn)E在BD邊上,連接CE,團(tuán)BCE
QA
【答案】(1)見解析;(2)①見解析;②tan/CDB=x;(3)j.
【分析】(1)利用AAS證明AACD三ABEC可得AC=BE;
…ArAD
(2)①先證明ADAC甌CBE,再利用相似三角形的性質(zhì)可得篝=黑:
②根據(jù)EIA=I3DCE=I3CBE=9O°,EADC=[3ABD,可推出△ADCH3ADB,從而求出相應(yīng)的線段長(zhǎng)度,
得至IJtanElCDB的值.
(3)根據(jù)MDCWABD,可推出△ADCEBADB,從而得到AD的長(zhǎng),根據(jù)[3BCE+EIBAD=180°,以
E為圓心,EC長(zhǎng)為半徑畫弧,交BC于點(diǎn)H,連接EH,可得EH=EC,EIEHC=l2]ECB=0ADC+0DCA,
12
r,BEEHT4
可得△BEHEEADC,則而=就常下
3
【詳解】(1)證明:如圖1,
?.?ZA+ND+ZACD=180°,ZDCE+ZECB+ZACD=180°
又???ZA=NDCE,ZACD=ZACD
:.ZD=ZECB
又?.ZA=NCBE,DC=CE
:AACD*BEC
:.AC=BE
(2)①證明:回團(tuán)DCA+回DCE+回ECB=180°,
團(tuán)DCA+團(tuán)A+團(tuán)CDA=180°,回A二回DCE,
即1ADC二團(tuán)ECB,
團(tuán)團(tuán)A二回B,
團(tuán)團(tuán)DAC團(tuán)團(tuán)CBE,
.ACAD
,BE-BC
②如圖2,
回團(tuán)ADC二團(tuán)DBA,團(tuán)A二團(tuán)A,
團(tuán)團(tuán)ADCR01ABD,
ACAD
AB-AB
25
AB=AC+BC=—
3
AD
網(wǎng)3_^5
回訪一至
3
解得AD=5,
,公國(guó)DB二華
設(shè)團(tuán)DBA=團(tuán)CDA=a,
團(tuán)團(tuán)CDG=90-2a,
回回CGD=2a,
回回GCB二回GBC=a,
0CG=GB,
設(shè)CG=GB=x,
.n?_5^4
..DCJ-----------x
3
,而+1=1手一X
解得了=迫
15
Q
/.tanZCZ)B=—
15
團(tuán)團(tuán)ADOR1B,團(tuán)A二團(tuán)A,
回回ADC團(tuán)團(tuán)ADB,
.ADAB
,AC-AD
25
?T
?.亍一丁
AD
解得AD=5,
團(tuán)團(tuán)BCE+團(tuán)BAD=180°,回ADC+團(tuán)DCA+團(tuán)BAD=180°,
釀ADC+團(tuán)DCA二團(tuán)BCE,
以E為圓心,EC長(zhǎng)為半徑畫弧,交BC于點(diǎn)H,連接EH,
團(tuán)EH=EC,團(tuán)EHC二團(tuán)ECB二團(tuán)ADC+團(tuán)DCA,
HUB二團(tuán)ADC,
團(tuán)團(tuán)BEH二團(tuán)ACD,
團(tuán)團(tuán)BEHRBADC,
12
.BE_EH_~5_4
*,CD-AC-T-5
3
4
故答案為彳
【點(diǎn)睛】此題考查了相似三角形得性質(zhì)和判定,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出相關(guān)的線
段長(zhǎng)度,最后一問以EC為腰作等腰三角形為解題關(guān)鍵.
例5.(與反比例函數(shù)綜合)如圖,在矩形493。中,OB=4,。4=3,分別以03、Q4所
在直線為%軸和y軸,建立如圖所示的平面直角坐標(biāo)系,尸是邊5c上的一個(gè)動(dòng)點(diǎn)(不與B、
C重合),過產(chǎn)點(diǎn)的反比例函數(shù)〉=幺化>0)的圖象與AC邊交于點(diǎn)E,將沿M對(duì)折
X
后,C點(diǎn)恰好落在。3上的點(diǎn)。處,則上的值為.
21
【答案】v
O
【分析】過點(diǎn)E作軸于點(diǎn)〃,根據(jù)翻折的性質(zhì)得到/£Z?=/C=90。,進(jìn)而證明
FMFD4
AMED^ABDF,再根據(jù)相似的性質(zhì)得到—=—=通過矩形EA0M的性質(zhì)得到EM
DBDF3
的長(zhǎng)度,進(jìn)而得到。2的長(zhǎng)度,最后在中應(yīng)用勾股定理即可求解.
【詳解】如圖,過點(diǎn)E作EAf軸于點(diǎn)
y
回四邊形AOBC為矩形,OA=3,08=4,
0BC=OA=3,AC=OB=A,NC=90°,ZO5C=90°.
EA(0,3),0(0,0),8(4,0),C(4,3).
回點(diǎn)/在邊BC上,點(diǎn)E在邊AC上,
團(tuán)x尸=4,yE=3,
又回點(diǎn)E,尸在反比例函數(shù)y=f(A>0)的圖象上,
聯(lián),3),小高.
kk
團(tuán)A石二一,BF=~.
34
kk
^1EC=AC-AE=4一一,CF=BC-BF=3一一.
34
0ACEF沿EF對(duì)折后得到△DEF,
kk
團(tuán)NEDb=NC=90。,ED=EC=4——,DF=CF=3——.
34
^\ZMDE+ZFDB=90°.
回軸,0ZEMD=9O°
0ZMDE+ZAffiD=9O°,NEMD=/OBC=90。.
田/MED=NBDF.
kn-k
EMED"I4
BAMED^ABDF.團(tuán)-----=-----=------=——-——=—
DBDF2k12-k3
44
團(tuán)四邊形A05C是矩形,^\ZEAO=ZAOM=90°.
又回EM_Lx軸,^\ZEMO=90°.團(tuán)四邊形E40M是矩形,
?DB=--=:
團(tuán)石M=OA=3."44
3
在Rt△。班'中,滿足。尸=£>B2+B尸2,
即卜弋:二箭+0:解得V.故答案為:
【點(diǎn)睛】本題考查了矩形的性質(zhì),翻折的性質(zhì),相似三角形的判定與性質(zhì),坐標(biāo)與長(zhǎng)度之間
的關(guān)系以及勾股定理,作出合適的輔助線,熟練應(yīng)用以上知識(shí)點(diǎn)是解題關(guān)鍵.
例7.(與二次函數(shù)綜合)如圖,拋物線>=依2+如(0片0)過點(diǎn)44,0)和點(diǎn)5(1,-3),其頂點(diǎn)
為點(diǎn)C,連接AB,點(diǎn)D在拋物線上A、C兩點(diǎn)之間,過點(diǎn)D作。軸,垂足為點(diǎn)F,DF
與AB交于點(diǎn)E.
(1)求此拋物線的解析式.
(2)連接AD、BD,設(shè)△ABD的面積為S,點(diǎn)D的橫坐標(biāo)為m,求S關(guān)于m的函數(shù)關(guān)系式
并求出S的最大值.
(3)點(diǎn)M在坐標(biāo)軸上,試探究平面內(nèi)是否存在點(diǎn)N,使點(diǎn)A、B、M、N為頂點(diǎn)的四邊形是
矩形,若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)y=x2-4x;(2)+—,?;(3)存在,(3,1)或(一3,1)或(1,3).
-2(2)8O
【分析】(1)根據(jù)待定系數(shù)法即可求得;
(2)可求出直線A2的解析式,進(jìn)而求得E點(diǎn)的坐標(biāo),表示出DE,然后利用三角形面積公
式可求得△AB。的面積;
(3)當(dāng)為直角三角形時(shí),可找到滿足條件的點(diǎn)N,分三種情況分別討論可求得N點(diǎn)
坐標(biāo).
【詳解】(1)《拋物線"江+加3*0)過點(diǎn)4(4,0)和點(diǎn)8(1,—3),
116tz+4Z?=0,
\ct-\~h——3,
a=l,
解得
b=-4,
團(tuán)此拋物線的解析式為y=x2-4x.
(2)=x2-4x=(x-2)2-4,
田頂點(diǎn)C的坐標(biāo)為(2,-4),
團(tuán)點(diǎn)D在拋物線上A,C兩點(diǎn)之間,點(diǎn)D的橫坐標(biāo)為m,
m2-4m),
由點(diǎn)A(4,0)和點(diǎn)5(1,-3)得出直線AB的解析式為V=%-4,
團(tuán)£(機(jī),加一4),
團(tuán)DE=機(jī)一4一(機(jī)2-4m)=-m2+5m—4,
回S=;OE,瓦fI,
回S=;(一機(jī)2+5m—4)x(4—1)=—^-m2+^m-6,
3215,3(5、27
22212)8
回當(dāng)m的值為15時(shí),S有最大值2=7.
28
(3)El以A、B、M、N為頂點(diǎn)的四邊形是矩形,
△ABM為直角三角形,
①當(dāng)NA3M=90。,則M在y軸上時(shí),過點(diǎn)B作尸Q//x軸,軸,交于Q點(diǎn),如圖1,
圖1
由點(diǎn)A(4,0)和點(diǎn)8(1,-3)可知PB=1,AQ=3,30=4-1=3,
則有△MPBEIABQA,
PMPBPM1",
回詼;而’即三F解得「河=1,
^AMPB^^NHA,
^AH=PB=1,NH=PM=1,
回N(3,l),
②當(dāng)/ABM=90。,則M在x軸上時(shí),作軸于H,松,工軸于6,如圖2,
圖2
由點(diǎn)A(4,0)和點(diǎn)8。,—3)可知AH=4—1=3,BH=3,
則有AABH0AMGN,
BNG=BH=3,MG=AH=3,
國(guó)BH?=MH-AH,
032=3-MH,
ElAfff=3,
0G,H重合,
回OG=1,
回N(L3),
③當(dāng)NM4B=90。時(shí),則M只能在y軸上,作軸于P,NQ,y軸于Q,如圖3,
fflZNMQ+ZAMQ=90°,ZQMA+ZMAP=90"
^ZNMQ=ZMAP,
而NAMP+/BA尸=90。,NNMQ+NBAP=90。,
^\ZNMQ=ZBAP,
圖3
ZAMQ=ZBAP,
在ANQM與少臺(tái)中,./MQN=/BPA,
MN=AB,
SANQM^AAPB(AAS)
回NQ=A尸=3,MQ=PB=3,
回直線AB的解析式為y=x-4,
國(guó)直線AM的解析式為>=-x+4,
0M(O,4),
002=4-3=1,
國(guó)N(-3,1),
綜上可知存在滿足條件的N點(diǎn),其坐標(biāo)為(3,1)或(-3,1)或(1,3).
【點(diǎn)睛】本題主要考查二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、矩形的性質(zhì)、相似三角形的
性質(zhì)等.在(2)中求得E坐標(biāo)是解題的關(guān)鍵,在(3)中確定出M點(diǎn)的坐標(biāo)是解題的關(guān)鍵,
注意分類討論思想的應(yīng)用.本題考查知識(shí)點(diǎn)較基礎(chǔ),難度適中.
課后訓(xùn)練
3
1.如圖,在反比例函數(shù)>=士的圖象上有一動(dòng)點(diǎn)A,連接40并延長(zhǎng)交圖象的另一支于點(diǎn)8,
X
在第二象限內(nèi)有一點(diǎn)C,滿足AC=3C,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)C始終在函數(shù)y=V的圖象上運(yùn)
X
動(dòng),若A能C=有t—,貝必的值為()
AO
【答案】B
【分析】連接。。過點(diǎn)A作AEfflx軸于點(diǎn)E,過點(diǎn)C作CFffly軸于點(diǎn)F,通過角的計(jì)算找出回A0E
=EIC0F,結(jié)合“EIAEO=90。,EICFO=90。”可得出△AOEEBCOF,根據(jù)相似三角形的性質(zhì)得出比
例式,再由黑=逐,得出==:,可得出CF?OF的值,進(jìn)而得到k的值.
AOCO2
【詳解】如圖,連接0C,過點(diǎn)A作AE取軸于點(diǎn)E,過點(diǎn)C作CF?y軸于點(diǎn)F,
3
回由直線AB與反比例函數(shù)>=士的對(duì)稱性可知A、B點(diǎn)關(guān)于。點(diǎn)對(duì)稱,
X
團(tuán)AO=BO,
又回AC=BC,
團(tuán)CO回AB,
團(tuán)團(tuán)AOE+團(tuán)AOF=90°,團(tuán)AOF+團(tuán)COF=90°,
團(tuán)團(tuán)AOE=ISCOF,
又回團(tuán)AEO=90°,團(tuán)CFO=90°,
回回AOE回R1C0F,
AEOEAO
團(tuán)----=----
CFOF~cd
AO
AO
0一
CO2
回CF=2AE,0F=20E,
又I3AE?OE=3,
0CF?OF=|k|=4x3=12,
I3k=±12,
回點(diǎn)C在第二象限,
Ek=-12,
故選:B.
【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)的性質(zhì)以及相似三角形的
判定及性質(zhì),解題的關(guān)鍵是求出CF?0F=12.解決該題型題目時(shí),巧妙的利用了相似三角形
的性質(zhì)找出對(duì)應(yīng)邊的比例,再結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出結(jié)論.
2.如圖,在矩形A8CD中,AB=4,AD=5,E、F、G、//分別為矩形邊上的點(diǎn),HF
過矩形的中心。,且上田=AD.E為AB的中點(diǎn),G為8的中點(diǎn),則四邊形斯G歹的周長(zhǎng)
為()
A.375B.6君C.8A/3D.6拒
【答案】B
【分析】連接EG,證明四邊形EHGF是矩形,再證明△AEHSADHG,求得AH與。歸的
長(zhǎng)度,由勾股定理求得E"與龍,再由矩形的周長(zhǎng)公式求得結(jié)果.
【詳解】解:連接EG,
四邊形ABC。是矩形,
;.AB=CD,ABI/CD,
?.?E為AB的中點(diǎn),G為8的中點(diǎn),
:.AE=DG,AE//DG,
二四邊形AEGD是平行四邊形,
:.AD=EG,
,?,矩形是中心對(duì)稱圖形,H尸過矩形的中心。.
..EG過點(diǎn)0,且O〃=OF,OE=OG,
四邊形EHGF是平行四邊形,
HF=AD=EG,
;?四邊形EaGF是矩形,
:.NEHG=90。,
?.?ZA=ZZ)=90°,
ZAHE+ZAEH=ZAHE+ZDHG=90°,
:.ZAEH=ZDHG,
:.AAEHS/\DHG,
.AH_AE
設(shè)=則DH=5-x,
AE=DG=-AB=2,
2
x_2
解得,x=l或4,
.?.A//=l或4,
當(dāng)Af/=1時(shí),DH=4,則HE=《AH。+AE2=5&=石,
HG=y/DH2+DG2=V42+22=275,
???四邊形EFGH的周長(zhǎng)=2x(2石+病=6行;
同理,當(dāng)AH=4時(shí),四邊形EFGH的周長(zhǎng)=2x(2柄+君)=6
故選:B.
【點(diǎn)睛】本題主要考查了矩形的性質(zhì),相似三角形的性質(zhì)與判定,勾股定理,關(guān)鍵在于證明
四邊形EHG尸是矩形.
3.如圖,在Rt"lBC中,ZACB=90°,點(diǎn)。在A3上,連接CD,ZADC=2ZA,AC=4,
BC=5,貝l|線段CD=.
【答案】—
2
【分析】作CE=AC交AB于E,證明ADCE是等腰三角形,過點(diǎn)D作D甩CE于F,求出CF=
2,然后證明AABC回ACDF,利用相似三角形的性質(zhì)列出比例式計(jì)算即可.
【詳解】解:如圖,作CE=AC交AB于E,則I3A=EICEA,CE=4,
0EIADC=0DCE+0CEA,0ADC=20A,0EIDCE=EA=[aCEA,0DC=DE,
過點(diǎn)D作DFIXE于F,則CF=EF=;CE=2,
CFCD
00DCE=0A,0DFC=EBCA=9O°,ElAABCSACDF,0一=一
ACAB
在R5ABC中,AB=VAC2+BC2=V42+52^,
【點(diǎn)睛】本題主要考查了等腰三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)以及勾股定理
的應(yīng)用,通過作輔助線,構(gòu)造出等腰三角形和相似三角形是解題的關(guān)鍵.
2
4.如圖,AAOB是直角三角形,ZAOB=90°,03=2OA,點(diǎn)A在反比例函數(shù)y=-的圖象
X
上.若點(diǎn)B在反比例函數(shù)y=4的圖象上,則k的值為
【答案】-8
【分析】求函數(shù)的解析式只要求出B點(diǎn)的坐標(biāo)就可以,過點(diǎn)A,B作ACHr軸,BDEr軸,分
別于C,D.根據(jù)條件得到E1AC0釀0DB,得到絲=絲="=2,然后用待定系數(shù)法即可.
0CAC0A
【詳解】過點(diǎn)A,B作AC以軸,BD以軸,分別于C,D.
設(shè)點(diǎn)A的坐標(biāo)是(m,n),則AC=〃,0C=m,
RH1AOB=90°,
麗A0C+團(tuán)BOD=90°,
配1DBO+I3BOD=90°,
甌DB0=M0C,
幽BDO=囪ACO=90°,
團(tuán)團(tuán)BDO團(tuán)團(tuán)OCA,
BDODOB
i?i-------------------
OCAC~OA"
團(tuán)0B=20A,
團(tuán)BD=20D=2〃,
2
因?yàn)辄c(diǎn)A在反比例函數(shù)y=—的圖象上,則根〃=2,
x
k
團(tuán)點(diǎn)B在反比例函數(shù)y=*的圖象上,
X
配點(diǎn)的坐標(biāo)是1-2%2m),
Slk=-2n?2m=-4mn=-8.
故答案為:-8.
【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,相似三角形的判定和性質(zhì),求函數(shù)的
解析式的問題,一般要轉(zhuǎn)化為求點(diǎn)的坐標(biāo)的問題,求出圖象上點(diǎn)的橫縱坐標(biāo)的積就可以求出
反比例函數(shù)的解析式.
5.如圖,已知。是等邊AABC邊上的一點(diǎn),現(xiàn)將AABC折疊,使點(diǎn)C與。重合,折痕
為EF,點(diǎn)、E、尸分別在AC和8C上.如果AD:DB=2:3,則CE:CF的值為.
【答案】7:8
【分析】設(shè)AD^2x,DB=3x,連接DE、DF,由折疊的性質(zhì)及等邊三角形的性質(zhì)可得aWEfflBED,
由相似三角形的性質(zhì)即可求得CE:b的值.
【詳解】設(shè)AD=2x,DB=3x,則AB=5x
連接DE、DF,如圖所示
團(tuán)0ABe是等邊三角形
SBC=AC=AB=5x,0A=0B=0ACB=6O°
由折疊的性質(zhì)得:DE=CE,DF=CF,SEDF^SACB=60°
00ADE+0B£)F=18O°-0EDF=12OO
00B£)F+[3DFB=18O°-0B=12OO
^EADE^DFB
^\ADE^\BFD
DE^/\ADEAD~^~AE+DEAD+AE+CEAD+AC2%+5x7
回=———==一
DFC^BDFBD+DF+BFBD+CF+BFBD+BC3X+5X8
即CE:CF=7:8
故答案為:7:8
【點(diǎn)睛】本題考查了等邊三角形的性質(zhì),折疊的性質(zhì),相似三角形的判定與性質(zhì)等知識(shí),證
明三角形相似是本題的關(guān)鍵.
6.已知在RSABC中,ABAC=90°,AB=2,AC=4,。為8C邊上的一點(diǎn).過點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)園區(qū)的消防安全管理體系
- 36項(xiàng)護(hù)理管理制度
- ai能耗管理制度
- 標(biāo)準(zhǔn)農(nóng)貿(mào)市場(chǎng)管理制度
- 校內(nèi)作業(yè)公示管理制度
- 校園上學(xué)放學(xué)管理制度
- 校園兼職代理管理制度
- 校園思想陣地管理制度
- 校園校車安全管理制度
- 校園藍(lán)牙車輛管理制度
- 2025海南省交通投資控股限公司招聘30人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- GB/T 45475.2-2025塑料聚苯醚(PPE)模塑和擠出材料第2部分:試樣制備和性能測(cè)定
- 婦產(chǎn)科新入科人員培訓(xùn)
- 湖北省武漢市2025屆高中畢業(yè)生四月調(diào)研考試數(shù)學(xué)試卷及答案(武漢四調(diào))
- 食堂菜品加工規(guī)范
- 年度吊裝合同協(xié)議
- 2025年CSCO胰腺癌診療指南解讀
- 創(chuàng)業(yè)稅收政策培訓(xùn)
- 高中主題班會(huì) 我命由我不由天課件-2025年高三百日勵(lì)志班會(huì)課
- 2025高中學(xué)業(yè)水平考試生物重點(diǎn)知識(shí)點(diǎn)歸納總結(jié)(復(fù)習(xí)必背)
- 支氣管鏡操作流程
評(píng)論
0/150
提交評(píng)論