




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版九年級上冊數學期末模擬測試卷
一、選擇題(共12小題;共48分)
1.下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()
2.如果x=l是關于X的一元二次方程%2—a=o的一個根,那么a的值是()
A.1B.-1C.0D.2
3.已知的半徑為2cm,點P到圓心。的距離為3cm,則點尸和O。的位置關系為()
A.點尸在圓外B.點尸在圓上C.點P在圓內D.不能確定
4.若A(T,x),5(—3,%),。(1,為)為二次函數丁=必+4》一5的圖象上的三點,則%,為,%的大小關系
是()
A.%<%<%B.%<%<%C.%<%<%D.%<%<%
5.如圖,四邊形ABC。內接于。。,ZC=100°,那么/A是()
A.60°B.50°C.80°D.100°
6.若關于尤的一元二次方程近2—6九+9=0有兩個不相等的實數根,則左的取值范圍是()
A.k<lB,左<1且厚0C.#1D.k>1
7.設一元二次方程3=0的兩個實數根為均,巧,則再+再々+々等于()
A.1B.-1C.0D.3
8.如圖,在。。中,OA=AB,OCYAB,則下列結論錯誤的是()
第1頁共21頁
A.弦A3的長等于圓內接正六邊形的邊長B.弦AC的長等于圓內接正十二邊形的邊長
C.AC=BCD.ZBAC=30°
9.設左<0,那么函數y=-二與y=月在同一坐標系中的大致圖象可能是()
kx
10.如圖,四邊形A3CD是。。的內接四邊形,則ZAOC的度數(
A.60°B.70°C.90°D.110°
11.如圖,在長為100米,寬為80米的矩形場地上修建兩條寬度相等且互相垂直的道路,剩余部分進行綠化,要
使綠化面積為7644米2,則道路的寬應為多少米?設道路的寬為尤米,則可列方程為()
8銖
100^€
A.100x80-100x-80x=7644
B.(100-x)(80-x)+N=7644
C.(100-x)(80-x)=7644
D.100x+80x=356
12.如圖,已知二次函數y=ax2+bx+c(a^O)的圖象與x軸交于點A(-1,0),與y軸的交點B在(0,-2)和
(0,-1)之間(不包括這兩點),對稱軸為直線x=l.下列結論:?abc>0?4a+2b+c>0(3)4ac-b2<8a
12
④一<a<;⑤b>c.其中含所有正確結論的選項是()
33
第2頁共21頁
C.②④⑤D.①③④⑤
二、填空題(共5小題;共20分)
13.如圖,一個大正方形被平均分成9個小正方形,其中有2個小正方形已經被涂上黑色,讓一個小球自由滾動,
最終停在白色方磚上的概率是
14.已知4是關于x的方程x2-3mx+41n=0的一個根,并且這個方程的兩個根恰好是等腰^ABC的兩條邊長,則
△ABC的周長為.
15.用半徑為9,圓心角為120。的扇形圍成一個圓錐的側面(接縫忽略不計),則這個圓錐的底面半徑等于.
16.如圖,RtzXABC中,ZACB=90°,ZCAB=30°,BC=2,點0、H分別為邊AB、AC的中點,將AABC繞點B順
時針旋轉120。到△ABQ的位置,則整個旋轉過程中線段0H所掃過部分的面積(即陰影部分面積)為.
17.將拋物線、=必-2向左平移1個單位長度,再向上平移3個單位長度后,得到的拋物線解析式是.
三.解答題(共5小題)
18.某校組織開展運動會,小明和扎西兩名同學準備從100米短跑(記為項目A)、800米中長跑(記為項目2)、
跳遠(記為項目C)、跳高(記為項目。),即從4B,C,。四個項目中,分別選擇一個項目參加比賽.
(1)小明選擇“鉛球”項目是事件,選擇“跳遠”項目是事件(填“不可能”或“必然”
或“隨機”);小明選擇“跳遠”項目的概率是;
(2)請用畫樹狀圖或列表法求兩名同學選到相同項目的概率.
19.如圖,已知:A3是。。的直徑,點C在。。上,是的切線,AOJLCD于點D,E是A3延長線上
第3頁共21頁
的一點,CE交。0于點、F,連接OC,AC,若NZMO=105°,ZE=30°.
(2)若。。的半徑為2夜,求線段所的長.
20.九年級數學興趣小組經過市場調查,得到某種運動服每月的銷量與售價的相關信息如下表:
己知該運動服的進價為每件60元,設售價為'元.
(1)請用含尤的式子表示:①銷售該運動服每件的利潤是元;②月銷量是件;(直接寫出結果)
(2)設銷售該運動服的月利潤為J元,那么售價為多少時,當月的利潤最大,最大利潤是多少?
21.在平面直角坐標系中,點4(4,0),點8(0,4)分別是坐標軸上的點,連接A3.把繞點B逆時針旋轉得
△A50'.點A,。旋轉后的對應點為A,.記旋轉角為a.
(1)如圖①,當點O'落在A3邊上時,求a的值和點。'的坐標;
(2)如圖②,當[=60°時,求AA的長和點。的坐標;
(3)連接AO',直接寫出在旋轉過程中△AO'A面積的最大值.
22.如圖,直線y=+6(女尸0)與雙曲線y=4(e*0)相交于4(1,2)、5(加,—1)兩點.
(1)求直線和雙曲線解析式;
第4頁共21頁
(2)若A(石,%),4(馬,%),&(&,%)為雙曲線上的三點,且%<。<%2<%3,請直接寫出%,%,%的
大小關系式為;
(3)當時,反比例函數y的取值范圍為;
k
(4)觀察圖象,請直接寫出不等式kX+6〈上的解集:
X
第5頁共21頁
人教版九年級上冊數學期末模擬測試卷?教師版
三、選擇題(共12小題;共48分)
1.下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()
【答案】A
【解析】
【分析】根據軸對稱圖形與中心對稱圖形的概念求解.
【詳解】根據軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形
沿對稱中心旋轉180度后與原圖重合.因此,B選項是軸對稱也是中心對稱圖形,C、D選項是軸對稱但不是中心對
稱圖形,A選項只是中心對稱圖形但不是軸對稱圖形.故選A.
2.如果X=1是關于X的一元二次方程%2—4=0的一個根,那么。的值是()
A.1B.-1C.0D.2
【答案】A
【解析】
【分析】將1=1代入方程得1—。=0,解之可得.
【詳解】根據題意x=1代入方程式―a=o得1—。=0,
解得:a—1,
故選:A.
3.已知。。的半徑為2cm,點尸到圓心。的距離為3cm,則點尸和。。的位置關系為()
A.點P在圓外B.點P在圓上C.點P在圓內D.不能確定
【答案】A
【解析】
【分析】根據點與圓的位置關系進行判斷.
【詳解】解::。。的半徑為2cm,點P到圓心。的距離為3cm,
即QP=3cm,
點P在。。外,
故選:A.
第6頁共21頁
4.若A(TyJ,3(—3,%),。(1,%)為二次函數〉=必+4》一5的圖象上的三點,則%,為,%的大小關系
是()
A.%<%<%B.%<%<%C.%<%<%D.%<%<%
【答案】B
【解析】
【分析】把三個點的橫坐標代入函數解析式,求出對應函數值,比較大小即可.
【詳解】解:把A(T,x),B(-3,y2),C。,%)分別代入>=必+4x—5得,
%=16+4義(一4)—5=—5;%=9+4x(—3)—5=—8;y3-l+4xl-5=0;
則%,為,%的大小關系是必<M<%,
故選:B.
5.如圖,四邊形ABC。內接于。。,ZC=100°,那么/4是()
A.60°B.50°C,80°D.100°
【答案】C
【解析】
【分析】根據圓內接四邊形的對角互補計算即可.
【詳解】解::四邊形ABC。內接于。O,
AZA+ZC=180°,
VZC=100°,
AZA=180°-NC=180°-100°=80°,
故選:c.
6.若關于x的一元二次方程近2—6%+9=0有兩個不相等的實數根,則左的取值范圍是()
A.k<lB.左<1且厚0C.厚1D.k>l
【答案】B
【解析】
【分析】直接利用“△>()”目M/0求解即可.
第7頁共21頁
【詳解】解::關于尤的一元二次方程依2—6%+9=0有兩個不相等的實數根,
6)2—4x9左=36—36左X),且左w0,
左VI且左w0,
故選:B.
7.設一元二次方程V—2x—3=0的兩個實數根為為,巧,則當+斗々+々等于()
A.1B.-1C.0D.3
【答案】B
【解析】
【分析】先根據一元二次方程根與系數的關系得出:%+%=2,為%=-3,然后代入計算即可.
【詳解】解::一元二次方程£—2%—3=0的兩個實數根為為,巧,
/.%;+x2=2,=-3,
%+%%2+x2=Xl+x2+X1X2=2+(-3)=-l.
故選:B.
8.如圖,在。。中,OA=AB,OCLAB,則下列結論錯誤的是()
A.弦A3的長等于圓內接正六邊形的邊長B.弦AC的長等于圓內接正十二邊形的邊長
C.AC=BCD.ZBAC=30°
【答案】D
【解析】
【分析】根據正多邊形的性質和圓的相關概念對四個選項逐一進行分析.
【詳解】解:A.因為Q4=O5,OA=AB,
所以QA=OB=AB,
所以△ABO為等邊三角形,ZAOB^60°,
以A3為一邊可構成正六邊形,故結論正確,該選項不符合題意;
B.因為OC_LM,
第8頁共21頁
根據垂徑定理可知,AC=BC;
再根據A中結論,弦AC的長等于圓內接正十二邊形的邊長,故結論正確,該選項不符合題意;
C.根據垂徑定理,AC=BC>故結論正確,該選項不符合題意;
D.根據圓周角定理,圓周角的度數等于它所對的圓心角的度數的一半,
ZBAC=-ZBOC=-x-ZBOA=-x60°=15°,故結論錯誤,該選項符合題意.
2224
故選:D.
9.設左<0,那么函數y=-£與丁=勺在同一坐標系中的大致圖象可能是()
kx
【解析】
【分析】根據反比例函數及一次函數圖象的特點進行分析即可求解.
【詳解】解:?.?左<0,
jY
——>0,則正比例函數y=—-的圖象經過一、三象限,排除B、C選項;
左k
?:k<0,則反比例函數的圖象在二、四象限,排除A選項;
故選項D符合題意;
-->0
k
故選:D.
10.如圖,四邊形A3CD是。。的內接四邊形,的半徑為5,4=125°,則/AOC的度數(
B.70°c.90°D.110°
第9頁共21頁
【答案】D
【解析】
【分析】連接。4、0C,根據“圓內接四邊形對角互補”可求得一。的度數,根據圓周角定理即可求得/AOC.
【詳解】解:連接。4、0C,
?.?四邊形ABCD是。。的內接四邊形,ZB=125°,
ZD=180°-125°=55°,
ZAOC=2ZD=UO0,
故選D
11.如圖,在長為100米,寬為80米的矩形場地上修建兩條寬度相等且互相垂直的道路,剩余部分進行綠化,要
使綠化面積為7644米2,則道路的寬應為多少米?設道路的寬為x米,則可列方程為()
8瞇
ioo?k
A.100x80-100x-80尤=7644
B.(100-x)(80-x)+0=7644
C.(100-x)(80-x)=7644
D.100x+80x=356
【答案】C
【解析】
【詳解】設道路的寬應為x米,由題意有
(100-x)(80-X)=7644,
故選:C.
12.如圖,已知二次函數y=ax2+bx+c(a用)的圖象與x軸交于點A(-1,0),與y軸的交點B在(0,-2)和
(0,-1)之間(不包括這兩點),對稱軸為直線x=l.下列結論:?abc>0?4a+2b+c>0(3)4ac-b2<8a
④一<a<;⑤b>c.其中含所有正確結論的選項是()
33
第10頁共21頁
D.①③④⑤
【答案】D
【解析】
詳解】解:①???函數開口方向向上,
,a>0;
:對稱軸在y軸右側,
a、b異號,
,/拋物線與y軸交點在y軸負半軸,
.,.c<0,
abc>0,
故①正確;
②;圖象與X軸交于點A(-1,0),對稱軸為直線x=l,
圖象與x軸的另一個交點為(3,0),
...當x=2時,y<0,
4a+2b+c<0,
故②錯誤;
③:圖象與X軸交于點A(-1,0),
?,.當x=_[時,y=(—I)-?+Z?x(—l)+c=0,
.'.a-b+c=0,BPa=b-c,c=b-a,
;對稱軸為直線x=l,
b口
:?------=1,即b=一2a,
2a
c=b-a=(-2a)-a=-3a,
4ac-b2=4*a*(-3a)-(-26Z)2=-166Z2<0,
8a>0,
第11頁共21頁
4ac-b2<8a,
故③正確;
④;圖象與y軸的交點B在(0,-2)和(0,-1)之間,
.*?-2VcV-1,
-2V-3aV-1,
,21
??一>a>一,
33
故④正確;
⑤;a>0,
.*.b-c>0,即b>c,
故⑤正確.
故選:D.
四、填空題(共5小題;共20分)
13.如圖,一個大正方形被平均分成9個小正方形,其中有2個小正方形已經被涂上黑色,讓一個小球自由滾動,
最終停在白色方磚上的概率是.
7
【答案】-
【解析】
【分析】根據概率公式直接求解即可.
【詳解】解:如圖所示:在剩余7個白色小正方形中任選一個涂上陰影,使圖中涂上陰影的三個小正方形組成軸
對稱圖形,符合題意的有共7個,
7
故最終停在白色方磚上的概率是:一.
9
7
故答案為:一.
9
14.已知4是關于x的方程x2-3mx+4m=0的一個根,并且這個方程的兩個根恰好是等腰AABC的兩條邊長,則
△ABC的周長為.
【答案】10
【解析】
【分析】先根據一元二次方程的解的定義把x=4代入方程求出m得到原方程為N-6x+8=0,再解此方程得到得xi
=2,拉=4,然后根據三角形三邊的關系得到△ABC的腰為4,底邊為2,再計算三角形的周長.
第12頁共21頁
【詳解】解:把x=4代入方程得x2-3mx+41n=0,解得m=2,
則原方程x2-6x+8=0,
解得xi=2,X2=4,
因為這個方程的兩個根恰好是等腰AABC的兩條邊長,
①當AABC的腰為4,底邊為2,則AABC的周長為4+4+2=10;
②當AABC的腰為2,底邊為4時,不能構成三角形.
綜上所述,該三角形的周長的10.
故答案為10.
15.用半徑為9,圓心角為120。的扇形圍成一個圓錐的側面(接縫忽略不計),則這個圓錐的底面半徑等于.
【答案】3
【解析】
【分析】利用扇形求出對應弧長,即可求出所圍成的圓錐的底面半徑.
120°
【詳解】解:由題意可知,扇形的弧長為:——義2萬義9=61,
360°
底面周長為:671,
?-67r=27rR,
解得:R=3,
即:底面半徑等于3,
故答案為:3.
16.如圖,Rt/XABC中,ZACB=90°,ZCAB=30°,BC=2,點0、H分別為邊AB、AC的中點,將△ABC繞點B順
時針旋轉120°到△AiBQ的位置,則整個旋轉過程中線段0H所掃過部分的面積(即陰影部分面積)為.
C3%出
【答案】兀
【解析】
【詳解】試題分析:整個旋轉過程中線段。8所掃過部分的面積,其實是大扇形與小扇形8。。1的面積差.扇
形BO5的半徑為。2=2,扇形的半徑可在RtABHC中求得.而兩扇形的圓心角都等于旋轉角即120。,由此
可求出線段掃過的面積.
第13頁共21頁
解:連接BH、BHi
':ZACB=90°,N043=30。,BC=2
:.AB=4
:.AC-^AB2-BC2=2g
??,H為AC的中點
CH=-AC=y/3
在RtABHC中,BC=2
根據勾股定理可得:BH=y/j
.120^x7-120^x4
??S掃=5扇形BHH\~S扇形BOO\~=兀
360
17.將拋物線y=/一2向左平移1個單位長度,再向上平移3個單位長度后,得到的拋物線解析式是.
【答案】y=(x+l)2+l
【解析】
【分析】根據二次函數“左加右減、上加下減”的平移規律即可得答案.
【詳解】解:???將拋物線y=_?-2向左平移1個單位長度,再向上平移3個單位長度后,
平移后拋物線解析式是y=(x+Il-2+3=(x+1)2+1,
故答案為:y=(x+l)2+l.
四.解答題(共5小題)
18.某校組織開展運動會,小明和扎西兩名同學準備從100米短跑(記為項目A)、800米中長跑(記為項目8)、
跳遠(記為項目C)、跳高(記為項目。),即從A,B,C,。四個項目中,分別選擇一個項目參加比賽.
(1)小明選擇“鉛球”項目是事件,選擇“跳遠”項目是事件(填“不可能”或“必然”
或“隨機”);小明選擇“跳遠”項目的概率是;
第14頁共21頁
(2)請用畫樹狀圖或列表法求兩名同學選到相同項目的概率.
【答案】(1)不可能,隨機,-
4
【解析】
【分析】(1)根據不可能事件、隨機事件的概念及概率公式求解即可;
(2)畫樹狀圖列出所有等可能結果,從中找到符合條件的結果數,再根據概率公式求解即可.
【小問1詳解】
小明選擇“鉛球”項目是不可能事件;
選擇“跳遠”項目是隨機事件;
小明選擇“跳遠”項目的概率是工;
4
故答案為:不可能,隨機,一;
4
【小問2詳解】
畫樹狀圖如下:
ABCD
/IV./IV.
ABCDABCDABCDABCD
由樹狀圖知,共有16種等可能結果,其中兩名同學選到相同項目的有4種結果,
41
所以兩名同學選到相同項目的概率為一=一.
164
19.如圖,已知:A3是的直徑,點C在。。上,CD是。。的切線,于點。,E是A3延長線上
的一點,CE交OO于點、F,連接。C,AC,若NZMO=105°,ZE=30°.
(1)求NOCE的度數;
第15頁共21頁
(2)若。。的半徑為2&,求線段E尸的長.
【答案】(1)45°
(2)273-2
【解析】
【分析】(1)根據切線的性質得出OCLCD,從而得出A0〃OC,由平行線的性質可得:
AEOC=ZDAO=105°,根據三角形內角和定理即可得出答案;
(2)作OG_LCE于點G,根據垂徑定理可得FG=CG,根據30度角直角三角形即可求出GE=2若,進而可
得石廠的長.
【小問1詳解】
證明:是的切線,
OCVCD,
?:AD±CD,
:.AD//OC,
':ZDAO=105°,
:.ZEOC=ZDAO=105°,
':ZE=30°,
:.ZOCE=180°-105°-30°=45°;
【小問2詳解】
解:如圖,作OGLCE于點G,
根據垂徑定理,得FG=CG,
?:OC=2叵,ZOCE=45°.
:.CG=OG=2,
:.FG=2,
在R/ZXOGE中,
':ZE=30°,
:.OE=4,
第16頁共21頁
???GE=25
;?EF=GE-FG=2y/3-2.
20.九年級數學興趣小組經過市場調查,得到某種運動服每月的銷量與售價的相關信息如下表:
售價(元/件)100110120130
月銷量(件)200180160140
己知該運動服的進價為每件60元,設售價為X元.
(1)請用含尤的式子表示:①銷售該運動服每件的利潤是元;②月銷量是件;(直接寫出結果)
(2)設銷售該運動服的月利潤為J'元,那么售價為多少時,當月的利潤最大,最大利潤是多少?
【答案】(1)(片60);-Zr+400;(2)售價為130元時,當月的利潤最大,最大利潤是9800元.
【解析】
【分析】(1)根據利潤=售價-進價求出利潤,運用待定系數法求出月銷量;
(2)根據月利潤=每件的利潤X月銷量歹U出函數關系式,根據二次函數的性質求出最大利潤.
【詳解】解:
(1)①銷售該運動服每件的利潤是(%-60)元;
故答案為:(尤-60);
②設月銷量卬與x的關系式為卬=依+6,
10Qk+b=200
由題意得,[110左+〃=180
k=-2
解得,1=400
W=-2x+400;
故答案為:(-2x+400);
(2)由題意得,y=(x-60)(-2x+400)
=-2/+520X-24000
=-2(x-130)2+9800,
售價為130元時,當月的利潤最大,最大利潤是9800元.
21.在平面直角坐標系中,點4(4,0),點6(0,4)分別是坐標軸上的點,連接A3.把AABO繞點3逆時針旋轉得
△ABO'.點A,。旋轉后的對應點為A,0'.記旋轉角為a.
第17頁共21頁
(2)如圖②,當夕=60。時,求AA的長和點。的坐標;
(3)連接AO',直接寫出在旋轉過程中△AO'A面積的最大值.
【答案】⑴?=45°,(272,4-272);
⑵。(2百,2),AA,=40;
(3)面積最大時,S-a,。,=8+8友
【解析】
【分析】(1)先判斷△A5O是等腰直角三角形,當點O'落在邊A3上時,a=45°,如圖,過。作O'KLOB于
K,則ABOK是等腰直角三角形,利用勾股定理可得點O'的橫坐標,縱坐標;
(2)根據勾股定理求出A3,如圖,過點。'作07/,03于點再利用含30°的直角三角形的性質與勾股定理,
可得點A'的坐標;再說明△A8A為等邊三角形,可得AA的長;
(3)先判斷△AOW面積的最大值時,△ABO'的位置,再求出面積即可.
【小問1詳解】
解:??,點4(4,0),點3(0,4),
Q4=OB=4,△ABO是等腰直角三角形,
?*-AB=V42+42=4A/2>ZABO=45°.
當點。'落在邊AB上時,a=45°,
如圖,過。作O'KLOB于K,則ABO'K是等腰直角三角形,
圖①
BK=O'K,而。8=03=4,
第18頁共21頁
O'K2=8,則O'K=BK=2A/2,
OK=4—20,
...點O'的坐標是2,2.
【小問2詳解】
如圖,過點。'作07/,05于點H,
在RtA。'①/中,
VO'B=4,/。3。=60°,
:.ZHO'B=30°,
:.BH=^O'B=2,OH=4^^=25
OH=4—2=2,
。(2&,2);
當c=600時,
/.ZABA=60°,而45=45,
/.△A8A為等邊三角形,
???AA'=A'B=AB=4y/2-
【小問3詳解】
如圖,以40'為底,當高最大時,的面積最大,即當AAOB旋轉到如圖所示的位置時,高最大.
則47=AB+=40+4,
此時=;義行)=
SAAA,O.A'O'?AO'=;4(4+48+80.
第19頁共21頁
k/0)相交于A(L2)、網利,—1)兩點.
22.如圖,直線>=左逮+6(勺/0)與雙曲線丁=
X
(1)求直線和雙曲線解析式;
(2)若A(%,X),4(%2,%),人(鼻,%)為雙曲線上的三點,且看<0<%2<%3,請直接寫出%,%,%的
大小關系式為;
(3)當T<X<—1時,反比例函數y的取值范圍為;
(4)觀察圖象,請直接寫出不等式kx+方〈&的解集:.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市交通擁堵治理中的公交優先政策實施效果評價體系優化研究報告
- 教育培訓機構品牌推廣策略與市場拓展實戰案例分析報告
- 數字化技術在文化遺產保護中的應用與2025年技術應用前景展望報告
- 可愛風格設計核心方法
- 術后康復管理
- 2025深度探討合同履行過程中的風險與管理策略
- 安徽省蚌埠二中2015-2016學年高一生物上學期期中試題
- 胰腺癌病人的護理常規
- 牙齒保健與中醫
- 藥物性皮炎護理查房
- 2025年新媒體領導面試題及答案
- (高清版)DB11∕T2279-2024社會單位消防安全評估規范
- 2025年江蘇省蘇州市中考歷史復習精練卷(中國古代史) 含答案
- 二零二五年度個人二手電腦配件買賣合同
- 《加速度傳感器》課件
- 鋁加工(深井鑄造)企業安全生產數字化改造指引試行
- 控制在護理管理中的應用
- 《醫學美學導論》課件
- 《倉儲物流管理》課件:優化倉儲與物流效率
- 商場超市公司章程
- 四川省攀枝花市重點名校2025屆中考生物押題卷含解析
評論
0/150
提交評論