




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025DATA&AIRADAR
10challenges
tomasteryourData
&AItransformation
in2025
2
Summary
CHAPTER1
TheriseofAI:timetoscaleupandindustrializegovernance
1.IndustrializingAI
2.GenAIatscale:movingbeyondPoCtorealizetheopportunities
offeredbygenerativeAI
3.AIgovernance:increasedcomplexitytoaddressalltheunderlying
issues
4.Data/AIacculturationonalargescale,toaccelerateinnovation
andprepareforthefuture
CHAPTER2
UnlockthefullpotentialofData
5.AfederatedorganizationtounifyData-relatedroles,standards,and
practices
6.DemocratizetheuseofDataforasmanypeopleaspossible
7.Datastorytelling,ortheartofmakingDataspeakforitself
CHAPTER3
Datagovernanceandqualityremainkeyconcerns
8.SuccessfullycombiningDataQualityandDataObservability
9.GovernanceofunstructuredData:agrowingproblemfor
organizations
10.SystematizethemeasurementofthevaluegeneratedbyData
4
5
7
9
12
13
14
17
20
21
22
24
25
andwhat'snext?Preparingforthefuturebyputting27
peopleattheheartoftransformation
Data&AI:whatcanweexpect
in2025?
Theyear2024hasbeenachallengingoneforChiefDataOfficers/AIleaders,manyofwhomnowalsoholdthetitleofChiefData&AIOfficer,alongwiththeirteams.
TheriseofAI,particularlygenerativeAI,increasedinterestfromexecutivecommittees(ExCom)inData&AI,andevolvingregulationshaveputChiefDataOfficersunderpressuretotacklemultiplechallenges.
They’vehadtoaddresstheseemergingprioritieswhileexcellingintheirtraditionalrole:ensuringthecompanymaximizesthevalueofitsdataassetstoenhanceperformance,decision-making,and
competitiveness.
Tohelpyouprepareyourstrategiesandroadmapsfor2025(andbeyond),WavestonehasanalyzedthemajortrendsthatareshapingthedailyresponsibilitiesofChiefDataOfficersandthecore
challengestheywillfaceintheyearsahead.
WavestonesupportstheCDOs/AIleadersofmajorcompaniesandpublicinstitutionsonallgeographicalregions.Thisradarreflectstheassignmentscarriedoutduringtheyearandthechangesobservedbyallthefirm'sData&AIexperts.Wehavethusidentified
the10hottopicsfortheperiodahead.
3
4
TheriseofAI:
timetoscaleupandindustrialize
governance
CHAPTER1
1.IndustrializingAI
Despitetheriseofartificialintelligenceinthe
businessworld,around85%ofAIprojectsstillfailtoreachproduction.Thisfiguredecreasesslightlyfromyeartoyear,butremainsrelativelyhigh,
andonlythemostmatureorganizationsmanagetobringitdowndrastically.
TotakeAIprojectsallthewaytoproductionandintegratethemattheheartofbusinessprocesses,companiesarerethinkingtheiroperatingmodel.Thestakesaretwofold:
→Defineanorganization,rolesand
responsibilitiesthatprovidealltheskills
neededtoautonomouslydeliveraproductthroughoutitslifecycle;
→Definepracticestoensureproper
implementationofAI,fromdesignto
maintenanceinoperationalconditions.
Todate,thefirstchallengehasmostlybeen
addressedbysettingupAIFactory-type
organizations.Thesearespecifictoeach
organization,butwecanoutlineastate-of-the-artAIFactoryin3mainfunctions:
→ThefirstaimstoaddresstheData/AI
ecosystems,buildrelationshipswithpublishersandderivemaximumvaluefromthe
opportunitiesofferedbythemarket;
→Thesecondistodeliverusecases,bothforexperimentationandindustrialization;
→ThethirdaimstosteertheFactory'sactivities,bothupstream(managingbusinessdemand,drivingproposalstoaddressnewusecases)anddownstream(facilitatingadoption,drivingchangeandpromotingAIanditspotential
withintheorganization).
Thesecondchallengeliesindeliverypractices.AnMLmodelisnotenoughtodelivervalue;it
needstobedesignedfordeploymentin
production.Alltoooften,modelcreationis
decoupledfromdeployment,anddesignedfor
experimentation.Thereisnodesignauthority,nodevelopmentframework,noautomatedtasks,noversioning.MovingtowardsAIindustrialization
meansdeployingpartiallyautomatedmodelandinfrastructuremanagementpracticesthatare
designedforproductionuse.MLOpsaimstoaddresstheseissues.
5
CHAPTER1
Illustrationgénériqued'uneAIFactoryàl'étatdel'Arten2025
MLOps:thekeytomanagingAImodelsinproduction
FollowingonfromDevOps,MLOpsisasetofpracticesaimedatunifyingdevelopment
activities(Dev)andoperations(Ops),to
continuouslydeliverandmanageAImodels,fromdevelopmenttomonitoring,via
acceptanceanddeployment.Whilecertain
teamsarenowincreasinglyproficientininitialmodelproduction,thenextchallengestobeaddressedwillbeadvanced,automatic
performancemonitoring,driftdetectionandorchestrationofcontinuousretrainingto
maintainmodelrelevance.
ThechallengeforDataScientistsisnolongertoconfinethemselvestomodeldevelopment,buttoacquireMLEngineeringskillstoensuretheimplementationofthesepractices.Andfororganizations,thechallengeistodefinea
coherent,sharedframeworkacrosstheorganization,basedofcourseonbest
practicessharedbythemarket,andtodrivechangetoensureitsapplication.
6
CHAPTER1
2.GenAIatscale:movingbeyondPoC
torealizetheopportunitiesofferedby
generativeAI
2024sawtheriseofGenAI.OurstudyshowedinMay2024that
74%oforganizationshadalreadybegunworkonimplementinggenerativeAI.PoCshavebeenlaunchedsince2023andhaveledtoconvincingresults.Nevertheless,wenotethatmany
companiesarestillstuckinthePoCphaseandhavenotyetbeenabletomoveontotheindustrializationstage.SomeprojectsarestillPoCsmorethanayearaftertheirlaunch!
“GenerativeAIhasmade
decision-makersPoC-phobic."
Toavoidthissituation,werecommend:
→DefinesimplerulesforallPoCslaunchedwithinanorganization.Forexample,PoCsmustbe
limitedintimeandbudget,undergoaninitialarbitrationattheendofthefirstmilestone,andcanpotentiallybeextendedonceiftheinitialresultsareconvincing.Iftheexpectedresultstakealongtimetobedemonstrated,it'slikelythattheprojectwillhavetobeterminated,andthefocusshiftedtootherusecases;
→ManageasingleportfolioofGenAIPoCs(evenifdeliveryisdecentralized),andcollectively
arbitratewhichPoCsdeservetogofrom
deliverytoscale(demonstratedvalue,optimalreturnoninvestment,etc.).Thesemustbe
limitedinnumber,andacollectiveeffortmustbemadetodelivertheseprojectsas
effectivelyaspossible.
Atechnologicalstrategytobecarefullythoughtout
It'stemptingtowanttomovefasttotake
advantageofGenAIandgainacompetitiveedgequickly.
Somecompanieshaveentrusteddatascientistswiththekeystothehouse,inordertopromote
innovationandtime-to-value.However,this
strategycanbefraughtwithrisks:thefactthat
usecasesaredeliveredlocally,conceivedasa
singleunit,withrelativelylittleflexibilityand
scalability.AllthisatatimewhentheentireGenAIecosystemisevolvingveryrapidly,and
innovationsabound(newmodels,new
capabilities,etc.).How,forexample,canwe
ensurethatwewillbeabletomakethemostofanewmodelavailableonthemarketthatoffers
improvedperformance,withouthavingtorebuildeverything?
Worsestill,somecompanies,outofasenseof
havingfallenbehindtheircompetitors,quicklyforgedpartnershipswithcertaintechgiantstoreassuredecision-makers.Thesechoiceshave
sometimesledtovendorlockingsituations,in
whichanorganizationfindsitselflimitedinits
abilitytoinnovate,explorealternativesand
optimizeitsorientationsforspecificusecases.Inadditiontoflexibility,thefinancialequationcanalsobedegradedinthelongrun.
Companiesthathavethoughtthroughtheir
medium-tolong-termstrategyhavethustakentheirdesireforrobustnessandtechnology
diversificationintotheirownhands.Forexample,manyarebuildingmodel-agnosticGenAI
platformsandarchitectures.Suchaplatformmakesitpossibletohost,trainandmonitora
varietyofLLMs,enablingtheLLMbestsuitedtoeachsituationtobeusedtoderiveoptimum
value.Flexibilityisguaranteed,asisadaptabilityandtheabilitytoaccommodateafreshly
publishedmodel.
7
CHAPTER1
MaterializationintheformofAgents
AnAIAgentisasystemdesignedtoreasonwithcomplexproblems,createactionplans,and
executetheseplansusingaseriesoftools.Unliketraditionalcomputerapplications,theseagentshaveadvancedreasoning,memorization,and
taskexecutioncapabilities.Theseagentscan,forexample,solvecomplexproblems(e.g.,generateprojectplans,writecode...),performself-criticismbyanalyzingtheirownoutputs,useexistingtools
andIS,andevenperforminter-agentcollaboration.
TheseAgentsaremadeupofseveralelements:
1.ACoreAgent:thecentralelementintegratingallprocessingfunctionalities.
2.Amemorymodule:storesandretrieves
informationtomaintaincontextandcontinuityovertime.
3.Asetoftools:externalresourcesandAPIsthattheagentcanusetoperformspecifictasks.
4.Aplanningmodule:analyzesproblemsanddevelopsstrategiestosolvethem.
8
CHAPTER1
3.AIgovernance:increased
complexitytoaddressalltheunderlyingissues
TheriseofAIisalsopromptingdecision-makerstostrengthen
governance,bygraspingalltheissuesatstake.Thesearemany:riskmanagement,compliance,sovereignty,ethics,carbon
footprint,arejustsomeoftheissuestobeaddressedthroughthisgovernance.Anumberofissuesneedtobetackledatthesame
time,inordertoestablishasustainableapproachtoimplementingartificialintelligence.
AnorganizationadaptedtoaddressAI-relatedchallengesholistically
Organizationshavebeguntosetupan
organizationandrolestogovernAI-relatedtopics.Allofthemarefacingachallenge:managingtostriketherightbalancebetweenhavingaglobal,centrally-controlledview,whilenotbridlinglocalinitiativesandinnovativebusinesslineinitiatives.
Thekeyconcernisthereforeto"manage
decentralization"oftheIAinitiativeportfolio.Toachievethis,weneedto:
→Defineclearrolesandresponsibilitiesbetweencentralandlocallevels;
→Forcross-functionalfunctions(CDO,DPO,AIFactory,etc.),defineeachperson's
responsibilitiesandspecifyboundariesandinteractions.
→Implementmulti-levelgovernance:
?Astrategicbody,involvingmembersoftheexecutivecommittee,toapprehendallthesubjectsinherentinAI,particularlythe
impactsonHR,partners,customers...;
?Anoperationalbody,tomanagetheportfolio,highlightlocalinitiativesandencouragethedisseminationofsuccessfulinitiatives
throughouttheorganization.Thisbody
enablesustomaintainanexhaustiveviewoftheportfolio,soastobettermanagerisks
andensurecompliancewiththeAIAct(seebelow).
AgrowingneedfortrustedAI
TrustedAIreferstoartificialintelligencedesignedanddeployedinsuchawayastoguaranteehighlevelsoftransparency,safety,fairness,and
respectforhumanrightsandethicalvalues.ThisimpliesthatAIisdevelopedincompliancewith
rigorousstandardstoavoiduncontrolledbias,
protectuserprivacy,andensurerobustnessinthefaceoferrorsorcyber-attacks.TrustedAIisalsoexplainable,enablinguserstounderstandhow
andwhyitmakescertaindecisions.Finally,itincludesresponsiblegovernance,where
designersandoperatorsassumeresponsibilityfor
itsimpacts,whileintegratingcontroland
supervisionmechanismstopreventabuseormalicioususe.
SettinguptrustedAIsrequirestheinvolvementofavarietyofplayers:
→EthicsandCSRteams,todefineanAIpolicythatembodiesclearprinciplesandisalignedwiththeorganization'svalues;
→Engineersdevelopingthemodels,inordertoprovideexplainableanddocumentedmodels
→HRteams,tohelpsetuptrainingmodulessothatteamsapplytheseinstructions;
→BusinessesandDatascientists,toanalyzebiasesandmonitorresults;
→CISOandDPO,toguaranteesecurity,testvulnerabilitiesandcarryoutcontrols;
→ChiefData&AIOfficers,tosteertheoverallapproach.
9
CHAPTER1
TheAIAct:Gettingyourorganization
startedoncompliance
TheAIActwasenactedandcameintoforcein
August2024.TheActaimstoensurethatartificialintelligencesystemsandmodelsmarketedwithintheEuropeanUnionareusedethically,safelyandinawaythatrespectsEUfundamentalrights.
TheAIActthuscreatesregulationsapplicabletoartificialintelligencesystemsandmodelsbeingcommercializedandmarketed.Research
activitieswithnocommercialobjectivearenot
affected.Allsuppliers,distributorsordeployersofAIsystemsandmodels,legalentities(companies,foundations,associations,researchlaboratories,etc.),headquarteredintheEuropeanUnion,or
whenheadquarteredoutsidetheEuropeanUnion,whomarkettheirAIsystemormodelinthe
EuropeanUnion.
ThelevelofregulationandassociatedobligationsdependonthelevelofriskpresentedbytheAI
systemormodel.Thereare4levelsofrisk,and4levelsofcompliance:
→AIwithunacceptablerisk:AIsystemsand
modelswithunacceptableriskareprohibitedandmaynotbemarketedintheEuropean
Unionorusedforexport;
→High-riskAI:high-riskAIsystemsandmodelsmustbeCEmarkedtobemarketed;
→Low-riskAI:low-riskAIsystemsandmodelsmustbesubjecttoinformationand
transparencyobligationsvis-à-visusers;
→Minimal-riskAI:minimal-riskAIsystemsandmodelscancomplywithconductmeasures.
SpecialobligationsapplytogenerativeAIandtothedevelopmentofgeneral-purposeAImodels*(e.g.LLMs),withdifferentregulationsdependingonwhetherthebasicmodelisaccessibleornot,andonothersubsidiarycriteria(computing
power,numberofusers,etc.).
AIwillbeimplementedgraduallyoverthecomingyears:
→February2,2025:Article5takeseffect,
banningAIsystemswithunacceptablerisks;
→August2,2025:regulationsongeneral-
purposeAImodelswillbegin.TheEUAIOffice,alreadyestablished,willoverseegovernanceandregulatoryprocedures.Sanctionsfornon-compliancewillalsobegintoapply;
→August2,2026:generalapplicationoftheAIActbegins,withtheexceptionofarticle6
paragraph1onhigh-risksystems;
→August2,2027:appliedruleswillbeextendedtohigh-risksystems.TheEuropean
Commissionwillpublishpracticalguidelinesandexamplesofhigh-riskAIsystemsby
February1,2026.
Howtogetstartedoncompliance?StartwithanassessmentoftheAIsystemsinplaceandintheprocessofbeingsetup.
Asareminder,Wavestonehas
published,withFranceDigitaleandGide,
apracticalguide
toenable
companiestounderstandandapplyEuropeanAIlaw.
10
CHAPTER1
Risksandcybersecurity,alltoooften
forgotteninprojects
Withallthebuzzaroundartificialintelligence(AI),organizationsarefacingunprecedentedthreatsthatgototheveryheartofthesemodels.New
attacksaretakingshape,suchaspoisoning
(modifyingtrainingdatatotrickit),oracle
(hijackingAIstomakethemrevealthingsthey
shouldn't),orillusion(makingAIsbelievethingsthatarefalsebutinvisibletohumans).Newriskassessmentandprotectionmeasuresneedtobeputinplace.
Intheshortterm,thepriorityisthereforetosecurebusinessprojectsusingAI,particularlyinthe
followingstages:
→ClassificationofAIusecasesaccordingto
regulatorycriteria(refertothefutureEuropeanAIAct)ortheNIST(NationalInstituteof
StandardsandTechnology)AIriskmanagementframework;
→Definitionoftheresponsibilitymatrixandgovernanceforvalidatingusecases,takingintoaccountcybersecurity,transparency,privacy,biasandethics;
→Implementspecificmeasureswhen
necessary,eitherbyintegratingthemdirectlyintotheprojectdesign,orbyimplementing
newAIsecurityproductsthatarestartingtoappear.
11
CHAPTER1
4.Data/AIacculturationonalarge
scale,toaccelerateinnovationandprepareforthefuture
Oneofthemainobstaclestotheadoptionofinnovationsremainshumanresistance.AIisnoexception,anditsadoptionremains
amajorchallenge,notleastbecauseofthefearsand
misunderstandingsitarouses.Itisthereforebecomingcrucial
forcompaniestoacculturatetheirteamstoAI,bydemystifyingthistechnologyandexplainingitsapplicationsinconcreteterms.
and(and
DemystifyingAI:Reassuringinformingaboutwhatitcancannot)do
ThefirstchallengeofacculturationtoAIisto
dispelthemisunderstandingsandfearsthat
surroundit.Formany,AIisstillperceivedasa
mysterious,eventhreateningtechnology,capableofreplacinghumansormakinguncontrollable
decisions.ItisthereforeessentialtodemystifyAIbyexplainingwhatitcando,butalsoits
limitations.Forexample,AIisextremelypowerfulwhenitcomestoprocessinglargequantitiesofdataandautomatingrepetitivetasks,butitlackshumanawarenessandintuition.Reassuring
teamsonthesepointshelpspreparethemto
collaboratewiththesetechnologies,ratherthanfearingthem.
Daringtoexploretechnicalconcepts:thechallengeofmakingapplicationsconcrete
Beyondthisdemystification,it'simportanttodaretogofurtherinpedagogybyexplainingto
businessteamswhatthetechnologiesunderlyingAIareinconcreteterms.AImanagers:dareto
explaintoyourbusinessteamsandexecutives
whatOCR,LLMandclusteringare.Byrepeating
theseexplanationsandtakingastepback,you'llbeabletomaketheapplicationofAIinbusinessprocessestangible.Employeeswillthenbeabletounderstandhowthesetechnologiescanbe
integratedintotheirday-to-daywork,identifytheprocessesthatcouldbetransformedandthe
pocketsofvaluetobeexploitedforthecompany.
"NoData,noAI!?
Finally,acculturationmustinsistthatmagicalAIdoesn'texist,andthatitrequirestrainingmodelsonqualityData.AndtoinvolvebusinessunitsinDatamanagement.
12
Unlockthefull
potentialofData
CHAPTER2
5.Afederatedorganizationtounify
Data-relatedroles,standards,andpractices
EveryonenowagreesthatDataisakeyassetforthesuccessoforganizations.Yetitspotential
oftenremainsunder-exploited,dueto
organizationalsilos,knowledge,datacontrol,
accessibility,andinteroperability.Heterogeneouspracticesalsomakecollaborationbetween
differentteamsdifficult.
Tomeetthesechallenges,Datagovernance
remainsthewatchword.Anoperationalmodel
coveringorganization,roles,andresponsibilities,aswellasoperatingmodes,remainsamust-
haveforallorganizations.Andbeyondtheory,
thinkingaboutimplementationthroughconcretepracticesthatcanbeunderstoodbyallplayersisastrongdifferentiator,wheremanyorganizationsstillconfinethemselvestodescriptionwithout
tangibleapplicationoftheelementsdefined.Thisoperationalmodelcoversseveralkey
themes:
ThemostmatureorganizationshavetakenstepstogivethekeystotheirDataassetsbacktothe
business.ThismeansinvolvingbusinessfunctionsinDatamanagementandmakingthem
accountablefortheseactivities.Forexample:
→Businesses(re)becomeaccountableforDatamanagementwithintheirscope(Data
mapping,documentation,qualitymonitoringandimplementationofcorrectiveactions,
etc.);
→TheDataOfficeplaystheroleoforchestra
conductor,definingtheframework,tools,
policies,practices,andstandards.Itisalso
responsibleforsupportingthebusinessunitsintheirdevelopment,throughtrainingand
coaching.
1.Aneworganization,federatedaroundDatadomains,inwhichbusinesses
regaincontroloftheirData
Foralongtime,ITandDatamanagementhavebeenthemainstaysofDatamanagement.TheyarestilldoingsointheleastData-mature
organizations.Thisposesseveralproblems:
→Businessunitslackautonomyincontrolling
theirData,andbecomerelativelydependentonITorDatadepartmentsforaccesstotheirData,delayingthetime-to-marketofanalysesandprojects;
→Ontheotherhand,ITDepartmentsare
sometimesheldresponsibleforthequalityofDataoverwhichtheyhavenocontrolinordertodeveloptheprocessesusedtogenerate
andprocessit.Attemptstoremedythe
situationofteninvolvereprocessingthestock,withoutaddressingtheflowproblemsatthesourceofdatacreation.
Thechallengeistogivethebusiness
unitsbackthekeystotheirData
assets.
14
CHAPTER2
2.Aunifiedrolerepositorytofacilitate
know-howdeduplication,recruitmentandcareermanagement
It'snotuncommontofindorganizationsthatcan'ttellyouhowmany"Dataemployees"theyhave.Data'suniquepositionatthecrossroadsof
businessandtechnologyisamajorcontributingfactor.Theconsequencesaremanifold:
→Difficultyinmanagingtheworkforceandstrategicworkforceplanning;
→Difficultyinmanagingskillsandmaintainingthematthestateoftheartfortheseprofiles,againstabackdropofrapidlyevolving
technologiesandassociatedknow-how;
→Recruitmentandinternalmobilitycanbe
laborious,withcandidatesunableto
understandtheactivitiesbehindtheseprofilesandcareerpathsunclear;
→Data-relatedoperatingmethodsand
responsibilitiesthatneedtobefinelydefinedonaperimeter-by-perimeterbasis,andwhoseunderstandingbytherestoftheorganizationremainsopaque.
So,beyondacoherentorganization,Data/AIroles
aretendingtobestreamlinedtowardsa
common,sharedrepositoryacrossthe
organization.HRteamsarefullyintegratedintothisapproach.
3.Commonstandardsandpracticesthroughouttheorganization
Forthisfederatedorganizationtofunction
effectively,itisessentialtodefineandunifyDatamanagementstandardsandpractices.This
includescommonrulesfordatagovernance,
cataloguingprocedures,documentation
standards,aswellassecurityandcompliancepolicies.Inaddition,anorganization-wideDatacatalogisdefined,whichdescribesbusiness
conceptsviaaDataglossary,documentsDataintheDatadictionary,andrecordsthe
transformationsundergonebykeyData(Datalineage).
UnifiedstandardsensureDataconsistencyandqualitythroughouttheorganization.Theyalso
facilitatesystemintegrationandinteroperability,makingDatamoreaccessibleandusablebyall.Forexample,astandardizedDatamodelenablesteamsfromdifferentareastocollaboratemore
easily,shareinsights,andmultiplythevaluecreated.
What'smore,thesestandardsfacilitateData
sharing,notonlywithintheorganization,butalsoviaothersubsidiaries,andevenwiththirdpartiesandexternalpartners.
15
CHAPTER2
FocusonFiDA,thenewEuropeanregulationthatwillmakeamajor
contributiontothegrowingmaturityofDatasharinginfinancialservices:
TheFinancialDataAccess(FiDA)
regulationproposedbytheEuropean
CommissioninJune2023aimstocreatealegalframeworkfortheaccessand
useofconsumerfinancialData.ItispartofthebroaderOpenFinancestrategy,
extendingtherulesalreadyintroducedbythePaymentServicesDirective
(PSD2),whichonlyconcernedpaymentaccounts.
Essentially,FIDAwillmakeitpossibleto:→GreaterDatatransparency,withclear
andtransparentcommunicationonhowcustomerDataisusedand
sharedbetweenfinancialinstitutions;
→Fine-grainedcustomerconsent,
givingcustomerstheabilitytogrant,manageandwithdrawconsentfordatasharing;
→Enhancedsecurity,byimplementing
strictsecuritymeasuresforthe
protectionandprocessingoffinancialData;
→StandardizationofuserDataandtechnicalinterfacestoaccelerateData-sharingcapabilities.
FiDAcompliancewillthereforerequiretheimplementationofrulesfor
accessingandsharingveryspecific
customerData,andwillcontributetoasometimesforcedriseinthematurityoffinancialservicesplayersintheirDatasharingcapabilities.
16
CHAPTER2
6.DemocratizetheuseofData
forasmanypeopleaspossible
Theframeworkisthusset,withanorganization,roles/responsibilitiesandoperatingmodes.
AllthatremainsistopreparetheDataandmakeitavailabletothegreatestpossiblenumberofpeople.
a.DataProductstobuildupawealthofDatareadytobeexploited
WiththeexplosionofDataandtheaccelerationinitsuse,anewparadigmhasemergedoverthe
yearstofacilitateitsaccessanduse.TheconceptoftheDataproducthasthusemerged,andisnowbeingadoptedeverywhere.
ADataproductcanbegenericallydefinedas"aproductthatfacilitatesanend-goalthroughtheuseofData".Thetermthusencompassesvariousitems:
→Technicalfoundation"typeproducts,i.e.
technologicalcapabilitiesthatrepresentthefoundationsformanagingandleveragingData,andwhoseconstructionandevolutionarecarriedoutinproductmode(e.g.,aRAGplatform,theDatacatalog...);
→Dataproducts,wheretheDataitselfisofferedasaready-to-consumeproduct(e.g.,
customerrepository,salesperperimeter,etc.);
→Analyticsproducts(e.g.,BIdashboard,
recommendationengine,scoringmodel,etc.).
Inparticular,andbymisuseoflanguage,theDataproductisassimilatedtotheconceptof“Dataasproduct".ItisinthissensethattheDataproductisdefinedthroughtheDataMeshasdefinedby
ZhamakDehghani(seebelow).
ThisDataproducthasseveralbasicfeatures:
→Discoverable:Datais"sorted"bybusinessdomain(thenbysub-domains,families,
businessobjects,etc.)andstoredina
marketplace.PotentialconsumersarethusabletoseewhatDataisavailable,readitsdescription,andrequestaccesstoitif
necessary;
→Self-describing:productsaredocumented
anduserscanindependentlyunderstandwhattheycontain(viaproductdefi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 運城師范高等專科學校《經濟預測與決策》2023-2024學年第二學期期末試卷
- 昆明學院《臨床基本技能學2》2023-2024學年第二學期期末試卷
- 柳州職業(yè)技術學院《語言學概論I》2023-2024學年第二學期期末試卷
- 江西中醫(yī)藥高等專科學校《計算機游戲藝術》2023-2024學年第二學期期末試卷
- 泰州職業(yè)技術學院《視覺藝術形式構建》2023-2024學年第二學期期末試卷
- 景德鎮(zhèn)藝術職業(yè)大學《外國建筑史》2023-2024學年第二學期期末試卷
- 石家莊工商職業(yè)學院《兒童家具設計》2023-2024學年第二學期期末試卷
- 湖南工業(yè)職業(yè)技術學院《大學生創(chuàng)業(yè)就業(yè)指導》2023-2024學年第二學期期末試卷
- 青島城市學院《微觀經濟學(中級)》2023-2024學年第二學期期末試卷
- 邢臺學院《體育場館經營與管理》2023-2024學年第二學期期末試卷
- 人工智能與產業(yè)鏈供應鏈安全
- 飛行簽派員定期復訓:簽派資源管理
- 安徽工程大學畢業(yè)生就業(yè)協(xié)議書
- 2025版國家開放大學法學本科《知識產權法》期末紙質考試第三大題名詞解釋題庫
- 新能源汽車充電樁項目可行性研究報告模板及范文
- 電力市場概論張利課后參考答案
- 2024年【初中歷史】中考歷史試題(附答案)電子版可打印
- 工程設計重點難點分析及應對措施
- 防水材料質量檢測與控制考核試卷
- 高考物理一輪復習考點精講精練第34講 光電效應 波粒二象性(解析版)
- 電氣工程施工方案(裝修)
評論
0/150
提交評論