




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ENEN
EUROPEAN
COMMISSION
Brussels,6.2.2025
C(2025)924finalANNEX
ANNEX
tothe
CommunicationtotheCommission
ApprovalofthecontentofthedraftCommunicationfromtheCommission-
CommissionGuidelinesonthedefintionofanartificialintelligencesystemestablished
byRegulation(EU)2024/1689(AIAct)
1
I.PurposeoftheGuidelines
(1)Regulation(EU)2024/1689oftheEuropeanParliamentandoftheCouncil(‘theAIAct’)1enteredintoforceon1August2024.TheAIActlaysdownharmonisedrulesforthedevelopment,placingonthemarket,puttingintoservice,anduseofartificialintelligence(‘AI’)intheUnion.2ItsaimistopromoteinnovationinandtheuptakeofAI,whileensuringahighlevelofprotectionofhealth,safety,andfundamentalrightsintheUnion,includingdemocracyandtheruleoflaw.
(2)TheAIActdoesnotapplytoallsystems,butonlytothosesystemsthatfulfilthedefinitionofan‘AIsystem’withinthemeaningofArticle3(1)AIAct.ThedefinitionofanAIsystemisthereforekeytounderstandingthescopeofapplicationoftheAIAct.
(3)Article96(1)(f)AIActrequirestheCommissiontodevelopguidelinesontheapplicationofthedefinitionofanAIsystemassetoutinArticle3(1)ofthatAct.ByissuingtheseGuidelines,theCommissionaimstoassistprovidersandotherrelevantpersons,includingmarketandinstitutionalstakeholders,indeterminingwhetherasystemconstitutesanAIsystemwithinthemeaningoftheAIAct,therebyfacilitatingtheeffectiveapplicationandenforcementofthatAct.
(4)ThedefinitionofanAIsystementeredintoapplicationon2February20253,togetherwithotherprovisionssetoutinChaptersIandIIAIAct,notablyArticle5AIActonprohibitedAIpractices.AsthedefinitionofanAIsystemisdecisivetounderstandingthescopeoftheAIActincludingtheprohibitedpractices,thepresentGuidelinesareadoptedinparalleltoCommissionguidelinesonprohibitedartificialintelligencepractices.
(5)TheseGuidelinestakeintoaccounttheoutcomeofastakeholderconsultationandtheconsultationoftheEuropeanArtificialIntelligenceBoard.
(6)ConsideringthewidevarietyofAIsystems,itisnotpossibletoprovideanexhaustivelistofallpotentialAIsystemsintheseGuidelines.Thisisinlinewithrecital12AIAct,whichclarifiesthatthenotionofan‘AIsystem’shouldbeclearlydefinedwhileproviding‘theflexibilitytoaccommodatetherapidtechnologicaldevelopmentsinthisfield’.ThedefinitionofanAIsystemshouldnotbeappliedmechanically;eachsystemmustbeassessedbasedonitsspecificcharacteristics.
(7)TheGuidelinesarenotbinding.AnyauthoritativeinterpretationoftheAIActmayultimatelyonlybegivenbytheCourtofJusticeoftheEuropeanUnion(CJEU).
II.ObjectiveandmainelementsoftheAIsystemdefinition
(8)Article3(1)oftheAIActdefinesanAIsystemasfollows:
1Regulation(EU)2024/1689.
2Article1AIAct.
3Article113,thirdparagraph,point(a).
2
“‘AIsystem’meansamachine-basedsystemthatisdesignedtooperatewithvaryinglevelsofautonomyandthatmayexhibitadaptivenessafterdeployment,andthat,forexplicitorimplicitobjectives,infers,fromtheinputitreceives,howtogenerateoutputssuchaspredictions,content,recommendations,ordecisionsthatcaninfluencephysicalorvirtualenvironments;”
(9)Thatdefinitioncomprisessevenmainelements:(1)amachine-basedsystem;(2)thatisdesignedtooperatewithvaryinglevelsofautonomy;(3)thatmayexhibitadaptivenessafterdeployment;(4)andthat,forexplicitorimplicitobjectives;(5)infers,fromtheinputitreceives,howtogenerateoutputs(6)suchaspredictions,content,recommendations,ordecisions(7)thatcaninfluencephysicalorvirtualenvironments.
(10)ThedefinitionofanAIsystemadoptsalifecycle-basedperspectiveencompassingtwomainphases:thepre-deploymentor‘building’phaseofthesystemandthepost-deploymentor‘use’phaseofthesystem4.Thesevenelementssetoutinthatdefinitionarenotrequiredtobepresentcontinuouslythroughoutbothphasesofthatlifecycle.Instead,thedefinitionacknowledgesthatspecificelementsmayappearatonephase,butmaynotpersistacrossbothphases.ThisapproachtodefineanAIsystemreflectsthecomplexityanddiversityofAIsystems,ensuringthatthedefinitionalignswiththeAIAct'sobjectivesbyaccommodatingawiderangeofAIsystems.
1.Machine-basedsystem
(11)Theterm‘machine-based’referstothefactthatAIsystemsaredevelopedwithandrunonmachines.Theterm‘machine’canbeunderstoodtoincludeboththehardwareandsoftwarecomponentsthatenabletheAIsystemtofunction.Thehardwarecomponentsrefertothephysicalelementsofthemachine,suchasprocessingunits,memory,storagedevices,networkingunits,andinput/outputinterfaces,whichprovidetheinfrastructureforcomputation.Thesoftwarecomponentsencompasscomputercode,instructions,programs,operatingsystems,andapplicationsthathandlehowthehardwareprocessesdataandperformstasks.
(12)AllAIsystemsaremachine-based,sincetheyrequiremachinestoenabletheirfunctioning,suchasmodeltraining,dataprocessing,predictivemodellingandlarge-scaleautomateddecisionmaking.TheentirelifecycleofadvancedAIsystemsreliesonmachinesthatcanincludemanyhardwareorsoftwarecomponents.Theelementof‘machine-based’inthedefinitionofAIsystemunderlinesthefactthatAIsystemsmustbecomputationallydrivenandbasedonmachineoperations.
(13)Theterm‘machine-based’coversawidevarietyofcomputationalsystems.Forexample,thecurrentlymostadvancedemergingquantumcomputingsystems,whichrepresentasignificantdeparturefromtraditionalcomputingsystems,constitutemachine-basedsystems,despitetheiruniqueoperationalprincipesanduseofquantum-mechanical
4ForoverviewoftheAIsystemphasesseetheOECD(2024),“ExplanatorymemorandumontheupdatedOECDdefinitionofanAIsystem”,OECDArtificialIntelligencePapers,No.8,OECDPublishing,Paris,
/10.1787/623da898-en,
p.7.
3
phenomena,asdobiologicalororganicsystemssolongastheyprovidecomputationalcapacity.
2.Autonomy
(14)Thesecondelementofthedefinitionreferstothesystembeing‘designedtooperatewithvaryinglevelsofautonomy’.Recital12oftheAIActclarifiesthattheterms‘varyinglevelsofautonomy’meanthatAIsystemsaredesignedtooperatewith‘somedegreeofindependenceofactionsfromhumaninvolvementandofcapabilitiestooperatewithouthumanintervention’.
(15)Thenotionsofautonomyandinferencegohandinhand:theinferencecapacityofanAIsystem(i.e.,itscapacitytogenerateoutputssuchaspredictions,content,recommendations,ordecisionsthatcaninfluencephysicalorvirtualenvironments)iskeytobringaboutitsautonomy.
(16)Centraltotheconceptofautonomyis‘humaninvolvement’and‘humanintervention’andthushuman-machineinteraction.Atoneextremeofpossiblehuman-machineinteractionaresystemswhicharedesignedtoperformalltasksthoughmanuallyoperatedfunctions.Attheotherextremearesystemsthatarecapabletooperatewithoutanyhumaninvolvementorintervention,i.e.fullyautonomously.
(17)Thereferenceto‘somedegreeofindependenceofaction’inrecital12AIActexcludessystemsthataredesignedtooperatesolelywithfullmanualhumaninvolvementandintervention.Humaninvolvementandhumaninterventioncanbeeitherdirect,e.g.throughmanualcontrols,orindirect,e.g.thoughautomatedsystems-basedcontrolswhichallowhumanstodelegateorsupervisesystemoperations.
(18)Forexample,asystemthatrequiresmanuallyprovidedinputstogenerateanoutputbyitselfisasystemwith‘somedegreeofindependenceofaction’,becausethesystemisdesignedwiththecapabilitytogenerateanoutputwithoutthisoutputbeingmanuallycontrolled,orexplicitlyandexactlyspecifiedbyahuman.Likewise,anexpertsystemfollowingadelegationofprocessautomationbyhumansthatiscapable,basedoninputprovidedbyahuman,toproduceanoutputonitsownsuchasarecommendationisasystemwith‘somedegreeofindependenceofaction’.
(19)ThereferenceinthedefinitionofanAIsysteminArticle3(1)AIActto‘machine-basedsystemthatisdesignedtooperatewiththevaryinglevelsofautonomy’underlinestheabilityofthesystemtointeractwithitsexternalenvironment,ratherthanachoiceofaspecifictechnique,suchasmachinelearning,ormodelarchitectureforthedevelopmentofthesystem.
(20)Therefore,thelevelofautonomyisanecessaryconditiontodeterminewhetherasystemqualifiesasanAIsystem.AllsystemsthataredesignedtooperatewithsomereasonabledegreeofindependenceofactionsfulfiltheconditionofautonomyinthedefinitionofanAIsystem.
4
(21)Systemsthathavethecapabilitytooperatewithlimitedornohumaninterventioninspecificusecontexts,suchasinthehigh-riskareasidentifiedinAnnexIandAnnexIIIAIAct,may,undercertainconditions,triggeradditionalpotentialrisksandhumanoversightconsiderations.Thelevelofautonomyisanimportantconsiderationforaproviderwhendevising,forexample,thesystem’shumanoversightorriskmitigationmeasuresinthecontextoftheintendedpurposeofasystem.
3.Adaptiveness
(22)ThethirdelementofthedefinitioninArticle3(1)AIActisthatthesystem‘mayexhibitadaptivenessafterdeployment’.Theconceptsofautonomyandadaptivenessaretwodistinctbutcloselyrelatedconcepts.TheyareoftendiscussedtogetherbuttheyrepresentdifferentdimensionsofanAIsystem’sfunctionality.Recital12AIActclarifiesthat‘adaptiveness’referstoself-learningcapabilities,allowingthebehaviourofthesystemtochangewhileinuse.Thenewbehaviouroftheadaptedsystemmayproducedifferentresultsfromtheprevioussystemforthesameinputs.
(23)Theuseoftheterm‘may’inrelationtothiselementofthedefinitionindicatesthatasystemmay,butdoesnotnecessarilyhaveto,possessadaptivenessorself-learningcapabilitiesafterdeploymenttoconstituteanAIsystem.Accordingly,asystem’sabilitytoautomaticallylearn,discovernewpatterns,oridentifyrelationshipsinthedatabeyondwhatitwasinitiallytrainedonisafacultativeandthusnotadecisiveconditionfordeterminingwhetherthesystemqualifiesasanAIsystem.
4.AIsystemobjectives
(24)ThefourthelementofthedefinitionisAIsystemobjectives.AIsystemsaredesignedtooperateaccordingtooneormoreobjectives.Theobjectivesofthesystemmaybeexplicitlyorimplicitlydefined.Explicitobjectivesrefertoclearlystatedgoalsthataredirectlyencodedbythedeveloperintothesystem.Forexample,theymaybespecifiedastheoptimisationofsomecostfunction,aprobability,oracumulativereward.Implicitobjectivesrefertogoalsthatarenotexplicitlystatedbutmaybededucedfromthebehaviourorunderlyingassumptionsofthesystem.TheseobjectivesmayarisefromthetrainingdataorfromtheinteractionoftheAIsystemwithitsenvironment.
(25)Recital12AIActclarifiesthat,‘theobjectivesoftheAIsystemmaybedifferentfromtheintendedpurposeoftheAIsysteminaspecificcontext’.TheobjectivesofanAIsystemareinternaltothesystem,referringtothegoalsofthetaskstobeperformedandtheirresults.Forinstance,acorporatevirtualAIassistantsystemmayhaveobjectivestoansweruserquestionsonasetofdocumentswithhighaccuracyinandlowrateoffailures.Incontrast,theintendedpurposeisexternallyorientedandincludesthecontextinwhichthesystemisdesignedtobedeployedandhowitmustbeoperated.Indeed,accordingtoArticle3(12)AIAct,theintendedpurposeofanAIsystemreferstothe‘use
5
forwhichanAIsystemisintendedbytheprovider’.Forexample,inthecaseofacorporatevirtualAIassistantsystem,theintendedpurposemightbetoassistacertaindepartmentofacompanytocarryoutcertaintasks.Thismightrequirethatthedocumentsthatthevirtualassistantusescomplywithcertainrequirements(e.g.length,formatting)andthattheuserquestionsarelimitedtothedomaininwhichthesystemisintendedtooperate.Thisintendedpurposeisfulfillednotonlythroughthesystem'sinternaloperationtoachieveitsobjectives,butalsothroughotherfactors,suchastheintegrationofthesystemintoabroadercustomerserviceworkflow,thedatathatisusedbythesystem,orinstructionsforuse.
5.InferencinghowtogenerateoutputsusingAItechniques
(26)ThefifthelementofanAIsystemisthatitmustbeabletoinfer,fromtheinputitreceives,howtogenerateoutputs.Recital12AIActclarifiesthat“[a]keycharacteristicofAIsystemsistheircapabilitytoinfer.”Asfurtherexplainedinthatrecital,AIsystemsshouldbedistinguishedfrom“simplertraditionalsoftwaresystemsorprogrammingapproachesandshouldnotcoversystemsthatarebasedontherulesdefinedsolelybynaturalpersonstoautomaticallyexecuteoperations.”Thiscapabilitytoinferisthereforeakey,indispensableconditionthatdistinguishesAIsystemsfromothertypesofsystems.
(27)Recital12alsoexplainsthat‘[t]hiscapabilitytoinferreferstotheprocessofobtainingtheoutputs,suchaspredictions,content,recommendations,ordecisions,whichcaninfluencephysicalandvirtualenvironments,andtoacapabilityofAIsystemstoderivemodelsoralgorithms,orboth,frominputsordata.’Thisunderstandingoftheconceptof‘inference’doesnotcontradicttheISO/IEC22989standard,whichdefinesinference‘asreasoningbywhichconclusionsarederivedfromknownpremises’andthisstandardincludesanAI-specificnotestating:‘[i]nAI,apremiseiseitherafact,arule,amodel,afeatureorrawdata.”5.
(28)The‘processofobtainingtheoutputs,suchaspredictions,content,recommendations,ordecisions,whichcaninfluencephysicalandvirtualenvironments’,referstotheabilityoftheAIsystem,predominantlyinthe‘usephase’,togenerateoutputsbasedoninputs.A‘capabilityofAIsystemstoderivemodelsoralgorithms,orboth,frominputsordata’refersprimarily,butisnotlimitedto,the‘buildingphase’ofthesystemandunderlinestherelevanceofthetechniquesusedforbuildingasystem.
(29)Theterms‘inferhowto’,usedinArticle3(1)andclarifiedinrecital12AIAct,isbroaderthan,andnotlimitedonlyto,anarrowunderstandingoftheconceptofinferenceasanabilityofasystemtoderiveoutputsfromgiveninputs,andthusinfertheresult.Accordingly,theformulationusedinArticle3(1)AIAct,i.e.‘infers,howtogenerateoutputs’,shouldbeunderstoodasreferringtothebuildingphase,wherebyasystemderivesoutputsthroughAItechniquesenablinginferencing.
5ISO/IEC22989:2022,Informationtechnology—Artificialintelligence—Artificialintelligenceconceptsandterminology.
6
5.1.AItechniquesthatenableinference
(30)FocusingspecificallyonthebuildingphaseoftheAIsystem,recital12AIActfurtherclarifiesthat‘[t]hetechniquesthatenableinferencewhilebuildinganAIsystemincludemachinelearningapproachesthatlearnfromdatahowtoachievecertainobjectives,andlogic-andknowledge-basedapproachesthatinferfromencodedknowledgeorsymbolicrepresentationofthetasktobesolved.’Thosetechniquesshouldbeunderstoodas‘AItechniques’.
(31)Thisclarificationexplicitlyunderlinesthattheconceptof‘inference’shouldbeunderstoodinabroadersenseasencompassingthe‘buildingphase’oftheAIsystem.Recital12AIActthenprovidesfurtherguidanceontechniquesthatenablethisabilityofanAIsystemtoinferhowtogenerateoutputs.Accordingly,thetechniquesthatmaybeusedtoenableinferenceinclude‘machinelearningapproachesthatlearnfromdatahowtoachievecertainobjectivesandlogic-andknowledge-basedapproachesthatinferfromencodedknowledgeorsymbolicrepresentationofthetasktobesolved.’
(32)ThefirstcategoryofAItechniquesmentionedinrecital12AIActis‘machinelearningapproachesthatlearnfromdatahowtoachievecertainobjectives’.Thatcategoryincludesalargevarietyofapproachesenablingasystemto‘learn’,suchassupervisedlearning,unsupervisedlearning,self-supervisedlearningandreinforcementlearning.
(33)Inthecaseofsupervisedlearning,theAIsystemlearnsfromannotations(labelleddata),wherebytheinputdataispairedwiththecorrectoutput.Thesystemusesthoseannotationstolearnamappingfrominputstooutputsandthengeneralisesthistonew,unseendata.AnAI-enablede-mailspamdetectionsystemisanexampleofasupervisedlearningsystem.Duringitsbuildingphase,thesystemistrainedonadatasetcontainingemailsthathumanshavelabelledas‘spam’or‘notspam’tolearnpatternsfromthefeaturesofthelabellede-mails.Oncetrainedandinuse,thesystemcananalysenewe-mailsandclassifythemasspamornotspambasedonthepatternsithaslearnedfromthelabelleddata.
(34)OtherexamplesofAIsystemsbasedonsupervisedlearningincludeimageclassificationsystemstrainedonadatasetofimages,wherebyeachimageislabelledwithasetoflabels(e.g.objectssuchascars),medicaldevicediagnosticsystemstrainedonmedicalimaginglabelledbyhumanexperts,andfrauddetectionsystemsthataretrainedonlabelledtransactiondata.
(35)Inthecaseofunsupervisedlearning,theAIsystemlearnsfromdatathathasnotbeenlabelled.Themodelistrainedondatawithoutanypredefinedlabelsoroutputs.Usingdifferenttechniques,suchasclustering,dimensionalityreduction,associationrulelearning,anomalitydetection,orgenerativemodels,thesystemistrainedtofindpatters,structuresorrelationshipsinthedatawithoutexplicitguidanceonwhattheoutcomeshouldbe.AIsystemsusedfordrugdiscoverybypharmaceuticalcompaniesisan
7
exampleofunsupervisedlearning.AIsystemsuseunsupervisedlearning(e.g.clusteringoranomalitydetection)togroupchemicalcompoundsandpredictpotentialnewtreatmentsfordiseasesbasedontheirsimilaritiestoexistingdrugs.
(36)Self-supervisedlearningisasubcategoryofunsupervisedlearning,wherebytheAIsystemlearnsfromunlabelleddatainasupervisedfashion,usingthedataitselftocreateitsownlabelsorobjectives.AIsystemsbasedonself-supervisedlearningusevarioustechniques,suchasauto-encoders,generativeadversarialnetworks,orcontrastivelearning.AnimagerecognitionsystemthatlearnstorecogniseobjectsbypredictingmissingpixelsinanimageisanexampleofanAIsystembasedonself-supervisedlearning.Otherexamplesincludelanguagemodelsthatlearntopredictthenexttokeninasentenceorspeechrecognitionsystemsthatlearntorecognisespokenwordsbypredictingthenextacousticfeatureinanaudiosignal.
(37)AIsystemsbasedonreinforcementlearninglearnfromdatacollectedfromtheirownexperiencethrougha‘reward’function.UnlikeAIsystemsthatlearnfromlabelleddata(supervisedlearning)orthatlearnfrompatterns(unsupervisedlearning),AIsystemsbasedonreinforcementlearninglearnfromexperience.Thesystemisnotgivenexplicitlabelsbutinsteadlearnsbytrialanderror,refiningitsstrategybasedonthefeedbackitgetsfromtheenvironment.AnAI-enabledrobotarmthatcanperformtaskslikegraspingobjectsisanexampleofanAIsystembasedonreinforcementlearning.Reinforcementlearningcanbealsoused,forexample,tooptimisepersonalisedcontentrecommendationsinsearchenginesandtheperformanceofautonomousvehicles.
(38)Deeplearningisasubsetofmachinelearningthatutiliseslayeredarchitectures(neuralnetworks)forrepresentationlearning.AIsystemsbasedondeeplearningcanautomaticallylearnfeaturesfromrawdata,eliminatingtheneedformanualfeatureengineering.Duetothenumberoflayersandparameters,AIsystemsbasedondeeplearningtypicallyrequirelargeamountsofdatatotrain,butcanlearntorecognisepatternsandmakepredictionswithhighaccuracywhengivensufficientdata.AIsystemsbasedondeeplearningarewidelyused,anditisatechnologybehindmanyrecentbreakthroughsinAI.
(39)Inadditiontovariousmachinelearningapproachesdiscussedabove,thesecondcategoryoftechniquesmentionedinrecital12AIActare‘logic-andknowledge-basedapproachesthatinferfromencodedknowledgeorsymbolicrepresentationofthetasktobesolved’.Insteadoflearningfromdata,theseAIsystemslearnfromknowledgeincludingrules,factsandrelationshipsencodedbyhumanexperts.Basedonthehumanexpertsencodedknowledge,thesesystemscan‘reason’viadeductiveorinductiveenginesorusingoperationssuchassorting,searching,matching,chaining.Byusinglogicalinferencetodrawconclusions,suchsystemsapplyformallogic,predefinedrulesorontologiestonewsituations.Logic-andknowledge-basedapproachesincludeforinstance,knowledgerepresentation,inductive(logic)programming,knowledgebases,inferenceanddeductiveengines,(symbolic)reasoning,expertsystemsandsearchandoptimisationmethods.Forexample,classicallanguageprocessingmodelsbasedongrammaticalknowledgeandlogicalsemanticsrelyonthestructureoflanguage,
8
identifyingthesyntacticalandgrammaticalcomponentsofsentencestoextractthemeaningofagiventext.AnotherprominentexampleofAIsystemsbasedonlogicandknowledge-basedapproachesareearlygenerationexpertsystemsintendedformedicaldiagnosis,whicharedevelopedbyencodingknowledgeofarangeofmedicalexpertsandwhichareintendedtodrawconclusionsfromasetofsymptomsofagivenpatient.
5.2.SystemsoutsidethescopeoftheAIsystemdefinition
(40)Recital12alsoexplainsthattheAIsystemdefinitionshoulddistinguishAIsystemsfrom“simplertraditionalsoftwaresystemsorprogrammingapproachesandshouldnotcoversystemsthatarebasedontherulesdefinedsolelybynaturalpersonstoautomaticallyexecuteoperations.”
(41)SomesystemshavethecapacitytoinferinanarrowmannerbutmayneverthelessfalloutsideofthescopeoftheAIsystemdefinitionbecauseoftheirlimitedcapacitytoanalysepatternsandadjustautonomouslytheiroutput.Suchsystemsmayinclude:
Systemsforimprovingmathematicaloptimization
(42)Systemsusedtoimprovemathematicaloptimisationortoaccelerateandapproximatetraditional,wellestablishedoptimisationmethods,suchaslinearorlogisticregressionmethods,falloutsidethescopeoftheAIsystemdefinition.Thisisbecause,whilethosemodelshavethecapacitytoinfer,theydonottranscend‘basicdataprocessing’.Anindicationthatasystemdoesnottranscendbasicdataprocessingcouldbethatithasbeenusedinconsolidatedmannerformanyyears6.Thisincludes,forexample,machinelearning-basedmodelsthatapproximatefunctionsorparametersinoptimizationproblemswhilemaintainingperformance.Thesystemsaimtoimprovetheefficiencyofoptimisationalgorithmsusedincomputationalproblems.Forexample,theyhelptospeedupoptimisationtasksbyprovidinglearnedapproximations,heuristics,orsearchstrategies.
(43)Forexample,physics-basedsystemsmayusemachinelearningtechniquestoimprovecomputationalperformance,acceleratingtraditionalphysics-basedsimulationsorestimatingparameters,thatarethenfedintotheestablishedphysicsmodels.ThesesystemswouldfalloutsidethescopeoftheAIsystemdefinition.Inthisexample,machinelearningmodelsapproximatecomplexatmosphericprocesses,suchascloudmicrophysicsorturbulence,enablingfasterandmorecomputationallyefficientforecasts.
(44)Anotherexampleofasystemthatfallsoutsidethescopeofthedefinitionisasatellitetelecommunicationsystemtooptimizebandwidthallocationandresourcemanagement.Insatellitecommunication,traditionaloptimizationmethodsmaystrugglewithreal-timedemandsofnetworktraffic,especiallywhenadjustingforvaryinglevelsofuserdemandacrossdifferentregions.Machinelearningmodels,forinstance,canbeusedtopredict
6Inanycase,thesystemsthatarealreadyplacedonthemarketorputintoservicebefore2August2026benefitfrom‘grandfathering’clauseforeseeninArticle111(2)AIAct.
9
networktrafficandoptimizetheallocationofresourceslikepowerandbandwidthtosatellitetransponders,havingsimilarperformancetoestablishedmethodsinthefield.
(45)Whilstthesesystemsmayincorporateautomaticself-adjustments,theseadjustmentsareaddressedatoptimisingthefunctioningofthesystemsbyimprovingitscomputationalperformanceratherthan,forexample,atpermittingadjustmentsoftheirdecisionmakingmodelsinanintelligentway.UndertheseconditionstheymaybeexcludedfromtheAIsystemdefinition.
Basicdataprocessing
(46)Basicdataprocessingsystemreferstoasystemthatfollowspredefined,explicitinstructionsoroperations.Thesesystemsaredevelopedanddeployedtoexecutetasksbasedonmanualinputsorrules,withoutany‘learning,reasoningormodelling’atanystageofthesystemlifecycle.Theyoperatebasedonfixedhuman-programmedrules,withoutusingAItechniques,suchasmachinelearningorlogic-basedinference,togenerateoutputs.Thesebasicdataprocessingsystemsinclude,forexample,databasemanagementsystemsusedtosortorfilterdatabasedonspecificcriteria(e.g.‘findallcustomerswhopurchasedaspecificproductinthelastmonth’),standardspreadsheetsoftwareapplicationswhichdonotincorporateAIenabledfunctionalities,andsoftwarethatcalculatesapopulationaveragefromasurveythatislaterexploitedinageneralcontext.
(47)Alsosystemsthatsolelyintendedfordescriptiveanalysis,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海洋石油鉆采工程安全生產措施考核試卷
- 嵌入式系統信號處理模式考題及答案
- 公路工程未來趨勢試題及答案解析
- 豆類食品加工廠的安全生產標準化考核試卷
- 窄軌機車車輛制造中的技術創(chuàng)新與研發(fā)考核試卷
- 金屬廚房用具的經銷商關系維護考核試卷
- 公路建設程序與審批試題及答案
- 數據庫維護與故障排查試題及答案
- 農業(yè)作物病害診斷儀應用考核試卷
- 數據庫性能監(jiān)控的重要性與實施方法試題及答案
- 設備技術規(guī)范書模板
- 2025年浙江寧波慈溪工貿集團限公司面向社會公開招聘工作人員16人高頻重點提升(共500題)附帶答案詳解
- 公路橋梁工程前場安全培訓
- 企業(yè)門衛(wèi)培訓課件
- 企業(yè)門衛(wèi)培訓內容
- 年產1000噸方便面工廠設計說明書
- 2024-2025學年數學滬科版七年級上冊期末綜合測試卷(四)(含答案)
- 2025年中考英語模擬試卷猜題卷(含答案)
- 《保護綠色地球》課件
- 2024-2030年中國天然靛藍行業(yè)深度調查及投資價值研究報告版
- 基礎護理學選擇試題庫+答案
評論
0/150
提交評論