福建省永春一中、培元、季延、石光中學2023-2024學年高三下學期第四次質量考評數學試題_第1頁
福建省永春一中、培元、季延、石光中學2023-2024學年高三下學期第四次質量考評數學試題_第2頁
福建省永春一中、培元、季延、石光中學2023-2024學年高三下學期第四次質量考評數學試題_第3頁
福建省永春一中、培元、季延、石光中學2023-2024學年高三下學期第四次質量考評數學試題_第4頁
福建省永春一中、培元、季延、石光中學2023-2024學年高三下學期第四次質量考評數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省永春一中、培元、季延、石光中學2022-2023學年高三下學期第四次質量考評數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是定義在上的偶函數,且在上單調遞增,則()A. B.C. D.2.從裝有除顏色外完全相同的3個白球和個黑球的布袋中隨機摸取一球,有放回的摸取5次,設摸得白球數為,已知,則A. B. C. D.3.某校團委對“學生性別與中學生追星是否有關”作了一次調查,利用列聯表,由計算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結論是()A.有99%以上的把握認為“學生性別與中學生追星無關”B.有99%以上的把握認為“學生性別與中學生追星有關”C.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星無關”D.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星有關”4.()A. B. C. D.5.已知函數,,且,則()A.3 B.3或7 C.5 D.5或86.已知函數,以下結論正確的個數為()①當時,函數的圖象的對稱中心為;②當時,函數在上為單調遞減函數;③若函數在上不單調,則;④當時,在上的最大值為1.A.1 B.2 C.3 D.47.執行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.8.若,則下列不等式不能成立的是()A. B. C. D.9.“是函數在區間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.函數在上單調遞減的充要條件是()A. B. C. D.11.已知是等差數列的前項和,若,,則()A.5 B.10 C.15 D.2012.函數的圖象可能是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,若,則______.14.在中,、的坐標分別為,,且滿足,為坐標原點,若點的坐標為,則的取值范圍為__________.15.函數的圖象向右平移個單位后,與函數的圖象重合,則_____.16.在的展開式中,項的系數是__________(用數字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.18.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數k使得以線段為直徑的圓恰好經過坐標原點O?若存在,求出k的值;若不存在,請說明理由.19.(12分)已知函數.其中是自然對數的底數.(1)求函數在點處的切線方程;(2)若不等式對任意的恒成立,求實數的取值范圍.20.(12分)如圖,在四棱錐中,是等邊三角形,,,.(1)若,求證:平面;(2)若,求二面角的正弦值.21.(12分)設為實數,已知函數,.(1)當時,求函數的單調區間:(2)設為實數,若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(,)有兩個相異的零點,求的取值范圍.22.(10分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數216362574以最高氣溫位于各區間的頻率估計最高氣溫位于該區間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據題意,由函數的奇偶性可得,,又由,結合函數的單調性分析可得答案.【詳解】根據題意,函數是定義在上的偶函數,則,,有,又由在上單調遞增,則有,故選C.【點睛】本題主要考查函數的奇偶性與單調性的綜合應用,注意函數奇偶性的應用,屬于基礎題.2.B【解析】

由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.【點睛】本題考查離散型隨機變量的方差的求法,解題時要認真審題,仔細解答,注意二項分布的靈活運用.3.B【解析】

通過與表中的數據6.635的比較,可以得出正確的選項.【詳解】解:,可得有99%以上的把握認為“學生性別與中學生追星有關”,故選B.【點睛】本題考查了獨立性檢驗的應用問題,屬于基礎題.4.A【解析】

分子分母同乘,即根據復數的除法法則求解即可.【詳解】解:,故選:A【點睛】本題考查復數的除法運算,屬于基礎題.5.B【解析】

根據函數的對稱軸以及函數值,可得結果.【詳解】函數,若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數的概念及性質和函數的對稱性問題,屬基礎題6.C【解析】

逐一分析選項,①根據函數的對稱中心判斷;②利用導數判斷函數的單調性;③先求函數的導數,若滿足條件,則極值點必在區間;④利用導數求函數在給定區間的最值.【詳解】①為奇函數,其圖象的對稱中心為原點,根據平移知識,函數的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數在上為單調遞減函數,正確.③由題意知,當時,,此時在上為增函數,不合題意,故.令,解得.因為在上不單調,所以在上有解,需,解得,正確.④令,得.根據函數的單調性,在上的最大值只可能為或.因為,,所以最大值為64,結論錯誤.故選:C【點睛】本題考查利用導數研究函數的單調性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.7.C【解析】

由程序語言依次計算,直到時輸出即可【詳解】程序的運行過程為當n=2時,時,,此時輸出.故選:C【點睛】本題考查由程序框圖計算輸出結果,屬于基礎題8.B【解析】

根據不等式的性質對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.9.C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.10.C【解析】

先求導函數,函數在上單調遞減則恒成立,對導函數不等式換元成二次函數,結合二次函數的性質和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數單調區間.求三角函數單調區間的兩種方法:(1)代換法:就是將比較復雜的三角函數含自變量的代數式整體當作一個角(或),利用基本三角函數的單調性列不等式求解;(2)圖象法:畫出三角函數的正、余弦曲線,結合圖象求它的單調區間.11.C【解析】

利用等差通項,設出和,然后,直接求解即可【詳解】令,則,,∴,,∴.【點睛】本題考查等差數列的求和問題,屬于基礎題12.A【解析】

先判斷函數的奇偶性,以及該函數在區間上的函數值符號,結合排除法可得出正確選項.【詳解】函數的定義域為,,該函數為偶函數,排除B、D選項;當時,,排除C選項.故選:A.【點睛】本題考查根據函數的解析式辨別函數的圖象,一般分析函數的定義域、奇偶性、單調性、零點以及函數值符號,結合排除法得出結果,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.-1【解析】

由向量垂直得向量的數量積為0,根據數量積的坐標運算可得結論.【詳解】由已知,∵,∴,.故答案為:-1.【點睛】本題考查向量垂直的坐標運算.掌握向量垂直與數量積的關系是解題關鍵.14.【解析】

由正弦定理可得點在曲線上,設,則,將代入可得,利用二次函數的性質可得范圍.【詳解】解:由正弦定理得,則點在曲線上,設,則,,又,,因為,則,即的取值范圍為.故答案為:.【點睛】本題考查雙曲線的定義,考查向量數量積的坐標運算,考查學生計算能力,有一定的綜合性,但難度不大.15.【解析】

根據函數圖象的平移變換公式求得變換后的函數解析式,再利用誘導公式求得滿足的方程,結合題中的范圍即可求解.【詳解】由函數圖象的平移變換公式可得,函數的圖象向右平移個單位后,得到的函數解析式為,因為函數,所以函數與函數的圖象重合,所以,即,因為,所以.故答案為:【點睛】本題考查函數圖象的平移變換和三角函數的誘導公式;誘導公式的靈活運用是求解本題的關鍵;屬于中檔題.16.【解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)2.【解析】

(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關于的一元二次方程,由直線與橢圓僅有一個公共點知,即可得到,的關系式,利用點到直線的距離公式即可得到,.當時,設直線的傾斜角為,則,即可得到四邊形面積的表達式,利用基本不等式的性質,結合當時,四邊形是矩形,即可得出的最大值.【詳解】(1)設,則,,,,由題意得,,橢圓的方程為;

(2)將直線的方程代入橢圓的方程中,得.

由直線與橢圓僅有一個公共點知,,化簡得:.

設,,當時,設直線的傾斜角為,則,,,,∴當時,,,.當時,四邊形是矩形,.

所以四邊形面積的最大值為2.【點睛】本題主要考查橢圓的方程與性質、直線方程、直線與橢圓的位置關系、向量知識、二次函數的單調性、基本不等式的性質等基礎知識,考查運算能力、推理論證以及分析問題、解決問題的能力,考查數形結合、化歸與轉化思想.18.(1);(2)存在,當時,以線段為直徑的圓恰好經過坐標原點O.【解析】

(1)設橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實數使得以線段為直徑的圓恰好經過坐標原點.設點,,,,將直線的方程代入,化簡,利用韋達定理,結合向量的數量積為0,轉化為:.求解即可.【詳解】解:(1)設橢圓的焦半距為c,則由題設,得,解得,所以,故所求橢圓C的方程為(2)存在實數k使得以線段為直徑的圓恰好經過坐標原點O.理由如下:設點,,將直線的方程代入,并整理,得.(*)則,因為以線段為直徑的圓恰好經過坐標原點O,所以,即.又,于是,解得,經檢驗知:此時(*)式的,符合題意.所以當時,以線段為直徑的圓恰好經過坐標原點O【點睛】本題考查橢圓方程的求法,橢圓的簡單性質,直線與橢圓位置關系的綜合應用,考查計算能力以及轉化思想的應用,屬于中檔題.19.(1);(2).【解析】

(1)利用導數的幾何意義求出切線的斜率,再求出切點坐標即可得在點處的切線方程;(2)令,然后利用導數并根據a的情況研究函數的單調性和最值.【詳解】(1),,∴,又,∴切線方程為,即.(2)令,,①若,則在上單調遞減,又,∴恒成立,∴在上單調遞減,又,∴恒成立.②若,令,∴,易知與在上單調遞減,∴在上單調遞減,,當即時,在上恒成立,∴在上單調遞減,即在上單調遞減,又,∴恒成立,∴在上單調遞減,又,∴恒成立,當即時,使,∴在遞增,此時,∴,∴在遞增,∴,不合題意.綜上,實數的取值范圍是.【點睛】本題主要考查導數的幾何意義及構造函數解決含參數的不等式恒成立時求參數的取值范圍問題,第二問的難點是構造函數后二次求導問題,對分類討論思想及化歸與等價轉化思想要求較高,難度較大,屬拔高題.20.(1)詳見解析(2)【解析】

(1)如圖,作,交于,連接.因為,所以是的三等分點,可得.因為,,,所以,因為,所以,因為,所以,所以,因為,所以,所以,因為平面,平面,所以平面.又,平面,平面,所以平面.因為,、平面,所以平面平面,所以平面.(2)因為是等邊三角形,,所以.又因為,,所以,所以.又,平面,,所以平面.因為平面,所以平面平面.在平面內作平面.以B點為坐標原點,分別以所在直線為軸,建立如圖所示的空間直角坐標系,則,,,所以,,,.設為平面的法向量,則,即,令,可得.設為平面的法向量,則,即,令,可得.所以,則,所以二面角的正弦值為.21.(1)函數單調減區間為;單調增區間為.(2)(3)【解析】

(1)據導數和函數單調性的關系即可求出;(2)分離參數,可得對任意的及任意的恒成立,構造函數,利用導數求出函數的最值即可求出的范圍;(3)先求導,再分類討論,根據導數和函數單調性以及最值得關系即可求出的范圍【詳解】解:(1)當時,因為,當時,;當時,.所以函數單調減區間為;單調增區間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設,,則,所以函數在上單調遞減,在上單調遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數在上單調遞增,所以函數至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當時,,所以,所以,所以當時,函數的值域為.所以,存在,使得,即,①且當時,,所以函數在上單調遞增,在上單調遞減.因為函數有兩個零點,,所以.②設,,則,所以函數在單調遞增,由于,所以當時,.所以,②式中的,又由①式,得.由第(1)小題可知,當時,函數在上單調遞減,所以,即.當時,(ⅰ)由于,所以得,又因為,且函數在上單調遞減,函數的圖象在上不間斷,所以函數在上恰有一個零點;(ⅱ)由于,令,設,,由于時,,,所以設,即.由①式,得,當時,,且,同理可得函數在上也恰有一個零點.綜上,.【點睛】本題考查含參數的導數的單調性,利用導數求不等式恒成立問題,以及考查函數零點問題,考查學生的計算能力

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論