




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省連云港市重點中學2025屆高考數學全真模擬密押卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數列中,則()A.10 B.16 C.20 D.242.已知為虛數單位,復數,則其共軛復數()A. B. C. D.3.設復數滿足(為虛數單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.設i為數單位,為z的共軛復數,若,則()A. B. C. D.5.甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達,則甲第一個到、丙第三個到的概率是()A. B. C. D.6.已知函數的值域為,函數,則的圖象的對稱中心為()A. B.C. D.7.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.848.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.9.閱讀下側程序框圖,為使輸出的數據為31,則①處應填的數字為A.4 B.5 C.6 D.710.定義在R上的函數滿足,為的導函數,已知的圖象如圖所示,若兩個正數滿足,的取值范圍是()A. B. C. D.11.在條件下,目標函數的最大值為40,則的最小值是()A. B. C. D.212.在中,分別為所對的邊,若函數有極值點,則的范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則______________;四棱錐P-ABCD的體積為______________.14.已知拋物線的焦點為,直線與拋物線相切于點,是上一點(不與重合),若以線段為直徑的圓恰好經過,則點到拋物線頂點的距離的最小值是__________.15.某學習小組有名男生和名女生.若從中隨機選出名同學代表該小組參加知識競賽,則選出的名同學中恰好名男生名女生的概率為___________.16.將2個相同的紅球和2個相同的黑球全部放入甲、乙、丙、丁四個盒子里,其中甲、乙盒子均最多可放入2個球,丙、丁盒子均最多可放入1個球,且不同顏色的球不能放入同一個盒子里,共有________種不同的放法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2018年反映社會現實的電影《我不是藥神》引起了很大的轟動,治療特種病的創新藥研發成了當務之急.為此,某藥企加大了研發投入,市場上治療一類慢性病的特效藥品的研發費用(百萬元)和銷量(萬盒)的統計數據如下:研發費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關系數精確到0.01,并判斷與的關系是否可用線性回歸方程模型擬合?(規定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產藥品的三類不同的劑型,,,并對其進行兩次檢測,當第一次檢測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設經過兩次檢測后,,三類劑型合格的種類數為,求的數學期望.附:(1)相關系數(2),,,.18.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.19.(12分)眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調整眼及頭部的血液循環,調節肌肉,改善眼的疲勞,達到預防近視等眼部疾病的目的.某學校為了調查推廣眼保健操對改善學生視力的效果,在應屆高三的全體800名學生中隨機抽取了100名學生進行視力檢查,并得到如圖的頻率分布直方圖.(1)若直方圖中后三組的頻數成等差數列,試估計全年級視力在5.0以上的人數;(2)為了研究學生的視力與眼保健操是否有關系,對年級不做眼保健操和堅持做眼保健操的學生進行了調查,得到下表中數據,根據表中的數據,能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關系?(3)在(2)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取8人,進一步調查他們良好的護眼習慣,在這8人中任取2人,記堅持做眼保健操的學生人數為X,求X的分布列和數學期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87920.(12分)在數列和等比數列中,,,.(1)求數列及的通項公式;(2)若,求數列的前n項和.21.(12分)如圖,在斜三棱柱中,側面與側面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.22.(10分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當時,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據等差數列性質得到,再計算得到答案.【詳解】已知等差數列中,故答案選C【點睛】本題考查了等差數列的性質,是數列的常考題型.2、B【解析】
先根據復數的乘法計算出,然后再根據共軛復數的概念直接寫出即可.【詳解】由,所以其共軛復數.故選:B.【點睛】本題考查復數的乘法運算以及共軛復數的概念,難度較易.3、A【解析】
由復數的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數對應的點所在象限的求解,涉及到復數的除法運算,屬于基礎題.4、A【解析】
由復數的除法求出,然后計算.【詳解】,∴.故選:A.【點睛】本題考查復數的乘除法運算,考查共軛復數的概念,掌握復數的運算法則是解題關鍵.5、D【解析】
先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達的基本事件種數,再得到甲第一個到、丙第三個到的基本事件的種數,利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是.故選:D【點睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎題.6、B【解析】
由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數的圖像及性質,考查函數的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為07、B【解析】
畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點睛】本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.8、A【解析】
利用平面向量的概念、平面向量的加法、減法、數乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.9、B【解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是利用循環求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續循環循環前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當i<5時退出,故選B.10、C【解析】
先從函數單調性判斷的取值范圍,再通過題中所給的是正數這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數在區間單調遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點睛】本題考查了函數單調性和不等式的基礎知識,屬于中檔題.11、B【解析】
畫出可行域和目標函數,根據平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標函數,根據圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.【點睛】本題考查了線性規劃中根據最值求參數,均值不等式,意在考查學生的綜合應用能力.12、D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數的極值.【方法點晴】本題考查余弦定理,函數的極值,涉及函數與方程思想思想、數形結合思想和轉化化歸思想,考查邏輯思維能力、等價轉化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉化化歸思想將原命題轉化為有兩個不等實根,從而可得.二、填空題:本題共4小題,每小題5分,共20分。13、90°【解析】
易得平面PAD,P點在與BA垂直的圓面內運動,顯然,PA是圓的直徑時,PA最長;將四棱錐補形為長方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點在與BA垂直的圓面內運動,易知,當P、、A三點共線時,PA達到最長,此時,PA是圓的直徑,則;又,所以平面ABCD,此時可將四棱錐補形為長方體,其體對角線為,底面邊長為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【點睛】本題四棱錐外接球有關的問題,考查學生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.14、【解析】
根據拋物線,不妨設,取,通過求導得,,再根據以線段為直徑的圓恰好經過,則,得到,兩式聯立,求得點N的軌跡,再求解最值.【詳解】因為拋物線,不妨設,取,所以,即,所以,因為以線段為直徑的圓恰好經過,所以,所以,所以,由,解得,所以點在直線上,所以當時,最小,最小值為.故答案為:2【點睛】本題主要考查直線與拋物線的位置關系直線的交軌問題,還考查了運算求解的能力,屬于中檔題.15、【解析】
從7人中選出2人則總數有,符合條件數有,后者除以前者即得結果【詳解】從7人中隨機選出2人的總數有,則記選出的名同學中恰好名男生名女生的概率為事件,∴故答案為:【點睛】組合數與概率的基本運用,熟悉組合數公式16、【解析】
討論裝球盒子的個數,計算得到答案.【詳解】當四個盒子有球時:種;當三個盒子有球時:種;當兩個盒子有球時:種.故共有種,故答案為:.【點睛】本題考查了排列組合的綜合應用,意在考查學生的理解能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)0.98;可用線性回歸模型擬合.(2)【解析】
(1)根據題目提供的數據求出,代入相關系數公式求出,根據的大小來確定結果;(2)求出藥品的每類劑型經過兩次檢測后合格的概率,發現它們相同,那么經過兩次檢測后,,三類劑型合格的種類數為,服從二項分布,利用二項分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,,∴與的關系可用線性回歸模型擬合;(2)藥品的每類劑型經過兩次檢測后合格的概率分別為,,,由題意,,.【點睛】本題考查相關系數的求解,考查二項分布的期望,是中檔題.18、(1):,直線:;(2).【解析】
(1)由消參法把參數方程化為普通方程,再由公式進行直角坐標方程與極坐標方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標方程,求出極徑,把比值化為的三角函數,從而可得最大值、【詳解】(1)消去參數可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標方程是;由,化為直角坐標方程為.(2)設,則,,,當時,取得最大值為.【點睛】本題考查參數方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,掌握公式可輕松自如進行極坐標方程與直角坐標方程的互化.19、(1)(2)能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系(3)詳見解析【解析】
(1)由題意可計算后三組的頻數的總數,由其成等差數列可得后三組頻數,可得視力在5.0以上的頻率,可得全年級視力在5.0以上的的人數;(2)由題中數據計算的值,對照臨界值表可得答案;(3)由題意可計算出這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,可得X可取0,1,2,分別計算出其概率,列出分布列,可得其數學期望.【詳解】解:(1)由圖可知,第一組有3人,第二組7人,第三組27人,因為后三組的頻數成等差數列,共有(人)所以后三組頻數依次為24,21,18,所以視力在5.0以上的頻率為0.18,故全年級視力在5.0以上的的人數約為人(2),因此能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系.(3)調查的100名學生中不近視的共有24人,從中抽取8人,抽樣比為,這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,X可取0,1,2,,X的分布列X012PX的數學期望.【點睛】本題主要考查頻率分布直方圖,獨立性檢測及離散型隨機變量的期望與方差等相關知識,考查學生分析數據與處理數據的能力,屬于中檔題.20、(1),(2)【解析】
(1)根據與可求得,再根據等比數列的基本量求解即可.(2)由(1)可得,再利用錯位相減求和即可.【詳解】解:(1)依題意,,設數列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【點睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國行政史試題及答案
- 浙江省越崎中學2024-2025學年物理高二第二學期期末復習檢測試題含解析
- 云南省彝良縣民族中2024-2025學年數學高二下期末監測試題含解析
- 云南省安寧市實驗石江學校2025屆生物高二第二學期期末復習檢測模擬試題含解析
- 人工智能提示詞工程師試題含答案
- 車輛抵押貸款合同審查及范本
- 高層建筑立面測量勞務分包合作合同
- 高端寫字樓場地租賃合同范本-承租方
- 災害預防廠房租賃安全保證合同
- 勞務雇傭合同模板(18篇)
- 廣東省佛山市高明區2021-2022學年六年級下學期期末語文試卷
- 近五年廣東中考物理真題及答案2023
- 正負離子表面活性劑混合體系雙水相性質的測定
- 2024年山東省新動能基金管理限公司招聘18人公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 中國哲學經典著作導讀智慧樹知到期末考試答案章節答案2024年西安交通大學
- MOOC 獸醫外科手術學-華中農業大學 中國大學慕課答案
- 三D打印公開課
- 考古發現與中國文化智慧樹知到期末考試答案2024年
- 胸痹心痛病中醫護理方案完整課件
- 程序的循環結構課件高中信息技術必修計算與數據
- 急性胃腸炎的護理管理
評論
0/150
提交評論