2025屆貴州省黔東南州名校高三下學期一模考試數學試題含解析_第1頁
2025屆貴州省黔東南州名校高三下學期一模考試數學試題含解析_第2頁
2025屆貴州省黔東南州名校高三下學期一模考試數學試題含解析_第3頁
2025屆貴州省黔東南州名校高三下學期一模考試數學試題含解析_第4頁
2025屆貴州省黔東南州名校高三下學期一模考試數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆貴州省黔東南州名校高三下學期一模考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.2.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.3.已知四棱錐的底面為矩形,底面,點在線段上,以為直徑的圓過點.若,則的面積的最小值為()A.9 B.7 C. D.4.已知復數在復平面內對應的點的坐標為,則下列結論正確的是()A. B.復數的共軛復數是C. D.5.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數,黑點為陰數.若從這10個數中任取3個數,則這3個數中至少有2個陽數且能構成等差數列的概率為()A. B. C. D.6.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.7.已知函數()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.8.從拋物線上一點(點在軸上方)引拋物線準線的垂線,垂足為,且,設拋物線的焦點為,則直線的斜率為()A. B. C. D.9.已知等差數列中,則()A.10 B.16 C.20 D.2410.已知函數,,其中為自然對數的底數,若存在實數,使成立,則實數的值為()A. B. C. D.11.設分別是雙線的左、右焦點,為坐標原點,以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(位于軸右側),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.12.用1,2,3,4,5組成不含重復數字的五位數,要求數字4不出現在首位和末位,數字1,3,5中有且僅有兩個數字相鄰,則滿足條件的不同五位數的個數是()A.48 B.60 C.72 D.120二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,a=3,,B=2A,則cosA=_____.14.在等比數列中,,則________.15.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側面的材料每平方米的價格分別為30元和20元,那么圓桶造價最低為________元.16.拋物線的焦點到準線的距離為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.18.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數的取值范圍.19.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.20.(12分)設直線與拋物線交于兩點,與橢圓交于兩點,設直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數,滿足?并說明理由.21.(12分)在△ABC中,分別為三個內角A、B、C的對邊,且(1)求角A;(2)若且求△ABC的面積.22.(10分)已知函數,其中.(Ⅰ)當時,求函數的單調區間;(Ⅱ)設,求證:;(Ⅲ)若對于恒成立,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

首先根據函數的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結果.【詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【點睛】該題考查的是有關三角函數的周期與函數圖象平移之間的關系,屬于簡單題目.2、C【解析】

在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數原理可得出結果.【詳解】兩組至少都是人,則分組中兩組的人數分別為、或、,

又因為名女干部不能單獨成一組,則不同的派遣方案種數為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.3、C【解析】

根據線面垂直的性質以及線面垂直的判定,根據勾股定理,得到之間的等量關系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設,,則.因為平面,平面,所以.又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因為,當且僅當,時等號成立,所以.故選:C.【點睛】本題考查空間幾何體的線面位置關系及基本不等式的應用,考查空間想象能力以及數形結合思想,涉及線面垂直的判定和性質,屬中檔題.4、D【解析】

首先求得,然后根據復數乘法運算、共軛復數、復數的模、復數除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復數,則,所以A選項不正確;復數的共軛復數是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復數的幾何意義,共軛復數,復數的模,復數的乘法和除法運算等基礎知識;考查運算求解能力,推理論證能力,數形結合思想.5、C【解析】

先根據組合數計算出所有的情況數,再根據“3個數中至少有2個陽數且能構成等差數列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數有:種,3個數中至少有2個陽數且能構成等差數列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數較多時,可考慮用排列數、組合數去計算.6、C【解析】

過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.7、A【解析】

是函數的零點,根據五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數的周期性,考查函數的對稱性.函數的零點就是其圖象對稱中心的橫坐標.8、A【解析】

根據拋物線的性質求出點坐標和焦點坐標,進而求出點的坐標,代入斜率公式即可求解.【詳解】設點的坐標為,由題意知,焦點,準線方程,所以,解得,把點代入拋物線方程可得,,因為,所以,所以點坐標為,代入斜率公式可得,.故選:A【點睛】本題考查拋物線的性質,考查運算求解能力;屬于基礎題.9、C【解析】

根據等差數列性質得到,再計算得到答案.【詳解】已知等差數列中,故答案選C【點睛】本題考查了等差數列的性質,是數列的常考題型.10、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數,(﹣1,+∞)上是增函數,故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當等號同時成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.11、B【解析】

由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因為四邊形為菱形,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點睛】此題考查的是求雙曲線的漸近線方程,利用了數形結合的思想,屬于基礎題.12、A【解析】

對數字分類討論,結合數字中有且僅有兩個數字相鄰,利用分類計數原理,即可得到結論【詳解】數字出現在第位時,數字中相鄰的數字出現在第位或者位,共有個數字出現在第位時,同理也有個數字出現在第位時,數字中相鄰的數字出現在第位或者位,共有個故滿足條件的不同的五位數的個數是個故選【點睛】本題主要考查了排列,組合及簡單計數問題,解題的關鍵是對數字分類討論,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知利用正弦定理,二倍角的正弦函數公式即可計算求值得解.【詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【點睛】本題主要考查了正弦定理,二倍角的正弦函數公式在解三角形中的應用,屬于基礎題.14、1【解析】

設等比數列的公比為,再根據題意用基本量法求解公比,進而利用等比數列項之間的關系得即可.【詳解】設等比數列的公比為.由,得,解得.又由,得.則.故答案為:1【點睛】本題主要考查了等比數列基本量的求解方法,屬于基礎題.15、【解析】

設桶的底面半徑為,用表示出桶的總造價,利用基本不等式得出最小值.【詳解】設桶的底面半徑為,高為,則,故,圓通的造價為解法一:當且僅當,即時取等號.解法二:,則,令,即,解得,此函數在單調遞增;令,即,解得,此函數在上單調遞減;令,即,解得,即當時,圓桶的造價最低.所以故答案為:【點睛】本題考查了基本不等式的應用,注意驗證等號成立的條件,屬于基礎題.16、【解析】試題分析:由題意得,因為拋物線,即,即焦點到準線的距離為.考點:拋物線的性質.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)首先可得,再面面垂直的性質可得平面,即可得到,再由,即可得到線面垂直;(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,利用空間向量法求出線面角;【詳解】解:(1)∵,點為的中點,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點,∴,∴,又平面,平面,,∴平面.(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,∵,∴,,,,∴,,,設平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的判定,面面垂直的性質定理的應用,利用空間向量法求線面角,屬于中檔題.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用零點分段討論法把函數改寫成分段函數的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的最小值,利用均值不等式求出的最小值,結合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當時,,,或,或,或所以不等式的解集為;(Ⅱ)因為,又(當時等號成立),依題意,,,有,則,解之得,故實數的取值范圍是.【點睛】本題考查由存在性問題求參數的范圍、零點分段討論法解絕對值不等式、利用絕對值三角不等式和均值不等式求最值;考查運算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.19、A【解析】

由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點睛】本題主要考查了正弦定理、余弦定理的應用,以及三角形的面積公式和正切的倍角公式的綜合應用,著重考查了推理與運算能力,屬于中檔試題.20、(1)證明見解析(0,2);(2)存在,理由見解析【解析】

(1)設直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯立直線與拋物線,橢圓,再由根與系數的關系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設由可得,,即存在常數滿足題意.【點睛】本題主要考查了直線與拋物線、橢圓的位置關系,直線過定點問題,考查學生分析解決問題的能力,屬于中檔題.21、(1);(2).【解析】

(1)整理得:,再由余弦定理可得,問題得解.(2)由正弦定理得:,,,再代入即可得解.【詳解】(1)由題意,得,∴;(2)由正弦定理,得,,∴.【點睛】本題主要考查了正、余弦定理及三角形面積公式,考查了轉化思想及化簡能力,屬于基礎題.22、(Ⅰ)函數的單調增區間為,單調減區間為;(Ⅱ)證明見解析;(Ⅲ).【解析】

(Ⅰ)利用二次求導可得,所以在上為增函數,進而可得函數的單調增區間為,單調減區間為;(Ⅱ)利用導數可得在區間上存在唯一零點,所以函數在遞減,在,遞增,則,進而可證;(Ⅲ)條件等價于對于恒成立,構造函數,利用導數可得的單調性,即可得到的最小值為,再次構造函數(a),,利用導數得其單調區間,進而求得最大值.【詳解】(Ⅰ)當時,,則,所以,又因為,所以在上為增函數,因為,所以當時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論