2025屆江蘇省宿遷市沭陽縣華沖高中高三壓軸卷數學試卷含解析_第1頁
2025屆江蘇省宿遷市沭陽縣華沖高中高三壓軸卷數學試卷含解析_第2頁
2025屆江蘇省宿遷市沭陽縣華沖高中高三壓軸卷數學試卷含解析_第3頁
2025屆江蘇省宿遷市沭陽縣華沖高中高三壓軸卷數學試卷含解析_第4頁
2025屆江蘇省宿遷市沭陽縣華沖高中高三壓軸卷數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省宿遷市沭陽縣華沖高中高三壓軸卷數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若時,恒成立,則實數的值為()A. B. C. D.2.若函數在時取得極值,則()A. B. C. D.3.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.4.直線x-3y+3=0經過橢圓x2a2+y2bA.3-1 B.3-12 C.5.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.6.有一改形塔幾何體由若千個正方體構成,構成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數至少是()A.8 B.7 C.6 D.47.已知等差數列中,,則()A.20 B.18 C.16 D.148.定義在上的奇函數滿足,若,,則()A. B.0 C.1 D.29.執行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.10.已知集合,,則集合子集的個數為()A. B. C. D.11.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.212.已知向量,則向量在向量方向上的投影為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.14.在矩形中,,為的中點,將和分別沿,翻折,使點與重合于點.若,則三棱錐的外接球的表面積為_____.15.設函數,則______.16.從一箱產品中隨機地抽取一件,設事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產品不是一等品”的概率為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.18.(12分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設平面與交于點,求證:為的中點.19.(12分)選修4-5:不等式選講已知函數的最大值為3,其中.(1)求的值;(2)若,,,求證:20.(12分)已知函數,,(1)討論的單調性;(2)若在定義域內有且僅有一個零點,且此時恒成立,求實數m的取值范圍.21.(12分)已知拋物線的頂點為原點,其焦點關于直線的對稱點為,且.若點為的準線上的任意一點,過點作的兩條切線,其中為切點.(1)求拋物線的方程;(2)求證:直線恒過定點,并求面積的最小值.22.(10分)某廣告商租用了一塊如圖所示的半圓形封閉區域用于產品展示,該封閉區域由以為圓心的半圓及直徑圍成.在此區域內原有一個以為直徑、為圓心的半圓形展示區,該廣告商欲在此基礎上,將其改建成一個凸四邊形的展示區,其中、分別在半圓與半圓的圓弧上,且與半圓相切于點.已知長為40米,設為.(上述圖形均視作在同一平面內)(1)記四邊形的周長為,求的表達式;(2)要使改建成的展示區的面積最大,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

通過分析函數與的圖象,得到兩函數必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數與的圖象,因為時,恒成立,于是兩函數必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數的圖象的綜合應用和函數的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.2、D【解析】

對函數求導,根據函數在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數在時取得極值,所以,解得.故選D【點睛】本題主要考查導數的應用,根據函數的極值求參數的問題,屬于常考題型.3、B【解析】

根據在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.4、A【解析】

由直線x-3y+3=0過橢圓的左焦點F,得到左焦點為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經過橢圓的左焦點F,令所以c=3,即橢圓的左焦點為F(-3,0)直線交y軸于C(0,1),所以,OF=因為FC=2CA,所以FA=3又由點A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【點睛】本題考查了橢圓的幾何性質——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據一個條件得到關于a,b,c的齊次式,轉化為a,c的齊次式,然后轉化為關于e的方程,即可得5、B【解析】

根據拋物線方程求得焦點坐標和準線方程,結合定義表示出;根據拋物線與圓的位置關系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點,準線方程為,根據拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點睛】本題考查了拋物線定義、方程及幾何性質的簡單應用,圓的幾何性質應用,屬于中檔題.6、A【解析】

則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數至少是8.故選:A.【點睛】本小題主要考查正方體有關計算,屬于基礎題.7、A【解析】

設等差數列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【詳解】設等差數列的公差為.由得,解得.所以.故選:A【點睛】本題主要考查了等差數列的基本量求解,屬于基礎題.8、C【解析】

首先判斷出是周期為的周期函數,由此求得所求表達式的值.【詳解】由已知為奇函數,得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數的奇偶性和周期性,屬于基礎題.9、C【解析】

根據程序框圖寫出幾次循環的結果,直到輸出結果是8時.【詳解】第一次循環:第二次循環:第三次循環:第四次循環:第五次循環:第六次循環:第七次循環:第八次循環:所以框圖中①處填時,滿足輸出的值為8.故選:C【點睛】此題考查算法程序框圖,根據循環條件依次寫出每次循環結果即可解決,屬于簡單題目.10、B【解析】

首先求出,再根據含有個元素的集合有個子集,計算可得.【詳解】解:,,,子集的個數為.故選:.【點睛】考查列舉法、描述法的定義,以及交集的運算,集合子集個數的計算公式,屬于基礎題.11、C【解析】

由圖像用分段函數表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉化劃歸,數形結合,數學運算的能力,屬于中檔題.12、A【解析】

投影即為,利用數量積運算即可得到結論.【詳解】設向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點睛】本題主要考察了向量的數量積運算,難度不大,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求的最小值可以轉化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設,由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應用問題,涉及到圓的相關知識與余弦定理,考查學生的分析問題和解決問題的能力,體現了數形結合的數學思想.14、.【解析】

計算外接圓的半徑,并假設外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據面,即可得解.【詳解】由題意可知,,所以可得面,設外接圓的半徑為,由正弦定理可得,即,,設三棱錐外接球的半徑,因為外接球的球心為過底面圓心垂直于底面的直線與中截面的交點,則,所以外接球的表面積為.故答案為:.【點睛】本題考查三棱錐的外接球的應用,屬于中檔題.15、【解析】

由自變量所在定義域范圍,代入對應解析式,再由對數加減法運算法則與對數恒等式關系分別求值再相加,即為答案.【詳解】因為函數,則因為,則故故答案為:【點睛】本題考查分段函數求值,屬于簡單題.16、0.35【解析】

根據對立事件的概率和為1,結合題意,即可求出結果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點睛】本題考查了求互斥事件與對立事件的概率的應用問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進而得到角A;(2)結合三角形的面積公式,和余弦定理得到,聯立兩式得到.解析:(I)因為,所以,由正弦定理,得.又因為,,所以.又因為,所以.(II)由,得,由余弦定理,得,即,因為,解得.因為,所以.18、(1)證明見解析;(2)證明見解析.【解析】

(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線面平行的性質定理即可得到∥,從而獲得證明【詳解】證明:(1)因為平面,平面,所以.因為,所以.又因為,平面,平面,所以平面.又因為平面,所以.(2)因為平面與交于點,所以平面.因為分別為的中點,所以∥.又因為平面,平面,所以∥平面.又因為平面,平面平面,所以∥,又因為是的中點,所以為的中點.【點睛】本題考查線面垂直的判定定理以及線面平行的性質定理,考查學生的邏輯推理能力,是一道容易題.19、(1)(2)見解析【解析】

(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉化為2ab≥1,再構造函數利用導數判斷單調性求出最小值可證.【詳解】(1)∵,∴.∴當時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當且僅當時等號成立,∴.令,.則在上單調遞減.∴.∴當時,.∴.【點睛】本題考查了絕對值不等式的解法,屬中檔題.本題主要考查了絕對值不等式的求解,以及不等式的恒成立問題,其中解答中根據絕對值的定義,合理去掉絕對值號,及合理轉化恒成立問題是解答本題的關鍵,著重考查分析問題和解答問題的能力,以及轉化思想的應用.20、(1)時,在上單調遞增,時,在上遞減,在上遞增.(2).【解析】

(1)求出導函數,分類討論,由確定增區間,由確定減區間;(2)由,利用(1)首先得或,求出的最小值即可得結論.【詳解】(1)函數定義域是,,當時,,單調遞增;時,令得,時,,遞減,時,,遞增,綜上所述,時,在上單調遞增,時,在上遞減,在上遞增.(2)易知,由函數單調性,若有唯一零點,則或.當時,,,從而只需時,恒成立,即,令,,在上遞減,在上遞增,∴,從而.時,,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.【點睛】本題考查用導數研究函數的單調性,考查函數零點個數與不等式恒成立問題,解題關鍵在于轉化,不等式恒成立問題通常轉化為求函數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論