




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西防城港市2025屆高考數學押題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若實數、滿足,則的最小值是()A. B. C. D.2.已知非零向量,滿足,,則與的夾角為()A. B. C. D.3.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標為,則直線的方程為()A. B. C. D.4.已知,,,若,則正數可以為()A.4 B.23 C.8 D.175.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.6.已知,滿足條件(為常數),若目標函數的最大值為9,則()A. B. C. D.7.已知正項等比數列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.48.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題9.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得10.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.11.函數f(x)=2x-3A.[32C.[3212.“完全數”是一些特殊的自然數,它所有的真因子(即除了自身以外的約數)的和恰好等于它本身.古希臘數學家畢達哥拉斯公元前六世紀發現了第一、二個“完全數”6和28,進一步研究發現后續三個完全數”分別為496,8128,33550336,現將這五個“完全數”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某市公租房源位于、、三個小區,每位申請人只能申請其中一個小區的房子,申請其中任意一個小區的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區房源的概率是______.(用數字作答)14.如圖是九位評委打出的分數的莖葉統計圖,去掉一個最高分和一個最低分后,所剩數據的平均分為_______.15.在中,,,則_________.16.過且斜率為的直線交拋物線于兩點,為的焦點若的面積等于的面積的2倍,則的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若,且,求證:;(2)若時,恒有,求的最大值.18.(12分)已知函數,其導函數為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.19.(12分)已知函數是自然對數的底數.(1)若,討論的單調性;(2)若有兩個極值點,求的取值范圍,并證明:.20.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現以為折痕將點旋轉至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.21.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.22.(10分)在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.(1)求證:平面;(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,求出最優解的坐標,代入目標函數得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯立,得,可得點,由得,平移直線,當該直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規劃,考查數形結合的解題思想方法,是基礎題.2、B【解析】
由平面向量垂直的數量積關系化簡,即可由平面向量數量積定義求得與的夾角.【詳解】根據平面向量數量積的垂直關系可得,,所以,即,由平面向量數量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數量積的運算,平面向量夾角的求法,屬于基礎題.3、A【解析】
設,,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【詳解】解:設,∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.【點睛】本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設出弦的兩端點坐標,代入拋物線方程相減后可把弦所在直線斜率與中點坐標建立關系.4、C【解析】
首先根據對數函數的性質求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數可以為8.故選:C【點睛】本題考查對數函數的性質的應用,屬于基礎題.5、C【解析】
由得F是弦AB的中點.進而得AB垂直于x軸,得,再結合關系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.6、B【解析】
由目標函數的最大值為9,我們可以畫出滿足條件件為常數)的可行域,根據目標函數的解析式形式,分析取得最優解的點的坐標,然后根據分析列出一個含參數的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數)可行域如下圖:由于目標函數的最大值為9,可得直線與直線的交點,使目標函數取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數,我們可以先畫出不含參數的幾個不等式對應的平面區域,分析取得最優解是哪兩條直線的交點,然后得到一個含有參數的方程(組,代入另一條直線方程,消去,后,即可求出參數的值.7、D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設等比數列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數列的知識,是一道中檔題.8、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.9、A【解析】
根據題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關系,考查三角函數的圖象和性質,意在考查學生對這些知識的理解掌握水平.10、C【解析】
由題可推斷出和都是直角三角形,設球心為,要使三棱錐的體積最大,則需滿足,結合幾何關系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設,則有,又,所以,當且僅當時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎題11、A【解析】
根據冪函數的定義域與分母不為零列不等式組求解即可.【詳解】因為函數y=2x-3解得x≥32且∴函數f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數fx的定義域為a,b,則函數fgx12、C【解析】
先求出五個“完全數”隨機分為兩組,一組2個,另一組3個的基本事件總數為,再求出6和28恰好在同一組包含的基本事件個數,根據即可求出6和28不在同一組的概率.【詳解】解:根據題意,將五個“完全數”隨機分為兩組,一組2個,另一組3個,則基本事件總數為,則6和28恰好在同一組包含的基本事件個數,∴6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數的應用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
基本事件總數,恰好有2人申請小區房源包含的基本事件個數,由此能求出該市的任意5位申請人中,恰好有2人申請小區房源的概率.【詳解】解:某市公租房源位于、、三個小區,每位申請人只能申請其中一個小區的房子,申請其中任意一個小區的房子是等可能的,該市的任意5位申請人中,基本事件總數,該市的任意5位申請人中,恰好有2人申請小區房源包含的基本事件個數:,該市的任意5位申請人中,恰好有2人申請小區房源的概率是.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,屬于中檔題.14、1【解析】
寫出莖葉圖對應的所有的數,去掉最高分,最低分,再求平均分.【詳解】解:所有的數為:77,78,82,84,84,86,88,93,94,共9個數,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個數,平均分為,故答案為1.【點睛】本題考查莖葉圖及平均數的計算,屬于基礎題.15、【解析】
先由題意得:,再利用向量數量積的幾何意義得,可得結果.【詳解】由知:,則在方向的投影為,由向量數量積的幾何意義得:,∴故答案為【點睛】本題考查了投影的應用,考查了數量積的幾何意義及向量的模的運算,屬于基礎題.16、2【解析】
聯立直線與拋物線的方程,根據一元二次方程的根與系數的關系以及面積關系求解即可.【詳解】如圖,設,由,則,由可得,由,則,所以,得.故答案為:2【點睛】此題考查了拋物線的性質,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)利用導數分析函數的單調性,并設,則,,將不等式等價轉化為證明,構造函數,利用導數分析函數在區間上的單調性,通過推導出來證得結論;(2)構造函數,對實數分、、,利用導數分析函數的單調性,求出函數的最小值,再通過構造新函數,利用導數求出函數的最大值,可得出的最大值.【詳解】(1),,所以,函數單調遞增,所以,當時,,此時,函數單調遞減;當時,,此時,函數單調遞增.要證,即證.不妨設,則,,下證,即證,構造函數,,所以,函數在區間上單調遞增,,,即,即,,且函數在區間上單調遞增,所以,即,故結論成立;(2)由恒成立,得恒成立,令,則.①當時,對任意的,,函數在上單調遞增,當時,,不符合題意;②當時,;③當時,令,得,此時,函數單調遞增;令,得,此時,函數單調遞減...令,設,則.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,函數在處取得最大值,即.因此,的最大值為.【點睛】本題考查利用導數證明不等式,同時也考查了利用導數求代數式的最值,構造新函數是解答的關鍵,考查推理能力,屬于難題.18、(1)(2)證明見解析【解析】
(1)求出的導數,根據導函數的性質判斷函數的單調性,再利用函數單調性解函數型不等式;(2)構造函數,利用導數判斷在區間上單調遞減,結合可得結果.【詳解】(1)若,則.設,則,所以在上單調遞減,在上單調遞增.又當時,;當時,;當時,,所以所以在上單調遞增,又,所以不等式的解集為.(2)設,再令,,在上單調遞減,又,,,,,.即【點睛】本題考查利用函數的導數來判斷函數的單調性,再利用函數的單調性來解決不等式問題,屬于較難題.19、(1)減區間是,增區間是;(2),證明見解析.【解析】
(1)當時,求得函數的導函數以及二階導函數,由此求得的單調區間.(2)令求得,構造函數,利用導數求得的單調區間、極值和最值,結合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當時,遞減,當時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當時,所以當時,有一個極值點,當時,有兩個極值點,當時,沒有極值點,綜上因為是的兩個極值點,所以不妨設,得,因為在遞減,且,所以又所以【點睛】本小題主要考查利用導數研究函數的單調區間,考查利用導數研究函數的極值點,考查利用導數證明不等式,考查化歸與轉化的數學思想方法,屬于難題.20、(1)證明見詳解;(2)【解析】
(1)在折疊前的正方形ABCD中,作出對角線AC,BD,由正方形性質知,又//,則于點H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結交于.因為//,故可得,即又旋轉不改變上述垂直關系,且平面,面,又面,所以(2)因為為直二面角,故平面平面,又其交線為,且平面,故可得底面,連結,則即為與面所成角,連結交于,在中,,在中,.所以與面所成角的正弦值為.【點睛】本題考查了線面垂直的證明與性質,利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年交通設備制造業數字化轉型升級政策環境分析報告
- 2025年工業互聯網平臺傳感器網絡自組網技術在航空航天領域的應用分析
- 2025年分布式能源系統生物質能源應用中的能源互聯網發展優化報告
- 2025年鄉村振興背景下職業技能培訓的可持續發展策略報告
- 2025年CCS項目在能源領域應用的經濟效益與投資決策支持研究報告
- 2025年醫療美容消費者心理特點與服務質量優化路徑報告
- 輕工行業25W22:關稅博弈繼續漿價震蕩分化
- 施工凈化車間管理制度
- 固體廢物收集點管理制度
- 所屬分公司財務管理制度
- 農機維修專業技能考試題及答案
- 浪潮集團ERP實施崗在線測評題
- 低溫水電解制氫系統 穩動態及電能質量性能測試方法(征求意見稿)
- 氣象行業天氣預報技能競賽理論試題庫資料(含答案)
- 城市軌道交通車輛檢修工(中級)技能鑒定考試題庫資料(含答案)
- 一把手講安全課件:提升全員安全意識
- 校園環保之星事跡材料(7篇)
- 四川省成都市金牛區2023-2024學年七年級下學期期末數學試題
- 人教版初中政治名言總結
- 植物學基礎智慧樹知到期末考試答案章節答案2024年哈爾濱師范大學
- 白豆蔻提取物的藥理藥效學研究
評論
0/150
提交評論