浙江省麗水市2025屆高考數學四模試卷含解析_第1頁
浙江省麗水市2025屆高考數學四模試卷含解析_第2頁
浙江省麗水市2025屆高考數學四模試卷含解析_第3頁
浙江省麗水市2025屆高考數學四模試卷含解析_第4頁
浙江省麗水市2025屆高考數學四模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省麗水市2025屆高考數學四模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知中,,則()A.1 B. C. D.2.執行如圖的程序框圖,若輸出的結果,則輸入的值為()A. B.C.3或 D.或3.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數,黑點為陰數.若從這10個數中任取3個數,則這3個數中至少有2個陽數且能構成等差數列的概率為()A. B. C. D.4.已知是平面內互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.5.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.6.已知為等腰直角三角形,,,為所在平面內一點,且,則()A. B. C. D.7.已知純虛數滿足,其中為虛數單位,則實數等于()A. B.1 C. D.28.設,分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.9.若復數在復平面內對應的點在第二象限,則實數的取值范圍是()A. B. C. D.10.古希臘數學家畢達哥拉斯在公元前六世紀發現了第一、二個“完全數”6和28,進一步研究發現后續三個“完全數”分別為496,8128,33550336,現將這五個“完全數”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.11.若復數,其中為虛數單位,則下列結論正確的是()A.的虛部為 B. C.的共軛復數為 D.為純虛數12.已知函數在上都存在導函數,對于任意的實數都有,當時,,若,則實數的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數的圖象向左平移個單位長度,得到一個偶函數圖象,則________.14.已知函數的最小值為2,則_________.15.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為__________.16.如圖是某幾何體的三視圖,俯視圖中圓的兩條半徑長為2且互相垂直,則該幾何體的體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知x,y,z均為正數.(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.18.(12分)已知曲線的參數方程為為參數,曲線的參數方程為為參數).(1)求與的普通方程;(2)若與相交于,兩點,且,求的值.19.(12分)已知a,b∈R,設函數f(x)=(I)若b=0,求f(x)的單調區間:(II)當x∈[0,+∞)時,f(x)的最小值為0,求a+5b的最大值.注:20.(12分)已知函數.(1)若,求函數的單調區間;(2)若恒成立,求實數的取值范圍.21.(12分)如圖,在平面直角坐標系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準線與圓C相切.(1)求橢圓E的方程;(2)設過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當時,求直線l的方程.22.(10分)已知數列滿足:對一切成立.(1)求數列的通項公式;(2)求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

以為基底,將用基底表示,根據向量數量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數量積運算,屬于中檔題.2、D【解析】

根據逆運算,倒推回求x的值,根據x的范圍取舍即可得選項.【詳解】因為,所以當,解得

,所以3是輸入的x的值;當時,解得,所以是輸入的x的值,所以輸入的x的值為

或3,故選:D.【點睛】本題考查了程序框圖的簡單應用,通過結果反求輸入的值,屬于基礎題.3、C【解析】

先根據組合數計算出所有的情況數,再根據“3個數中至少有2個陽數且能構成等差數列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數有:種,3個數中至少有2個陽數且能構成等差數列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數較多時,可考慮用排列數、組合數去計算.4、C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設,則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數性質.5、B【解析】

根據圖象求得函數的解析式,即可得出函數的解析式,然后求出變換后的函數解析式,結合題意可得出關于的等式,即可得出結果.【詳解】由圖象可得,函數的最小正周期為,,,則,,取,,則,,,可得,當時,.故選:B.【點睛】本題考查利用圖象求函數解析式,同時也考查了利用函數圖象變換求參數,考查計算能力,屬于中等題.6、D【解析】

以AB,AC分別為x軸和y軸建立坐標系,結合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數量積的運算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.7、B【解析】

先根據復數的除法表示出,然后根據是純虛數求解出對應的的值即可.【詳解】因為,所以,又因為是純虛數,所以,所以.故選:B.【點睛】本題考查復數的除法運算以及根據復數是純虛數求解參數值,難度較易.若復數為純虛數,則有.8、C【解析】

設過點作圓的切線的切點為,根據切線的性質可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質、雙曲線定義、圓的切線性質,意在考查直觀想象、邏輯推理和數學計算能力,屬于中檔題.9、B【解析】

復數,在復平面內對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【點睛】本題考查了復數的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.10、B【解析】

推導出基本事件總數,6和28恰好在同一組包含的基本事件個數,由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數,6和28恰好在同一組包含的基本事件個數,∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.11、D【解析】

將復數整理為的形式,分別判斷四個選項即可得到結果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數,正確本題正確選項:【點睛】本題考查復數的模長、實部與虛部、共軛復數、復數的分類的知識,屬于基礎題.12、B【解析】

先構造函數,再利用函數奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數,從而等價于,因此選B.【點睛】本題考查利用函數奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據平移后關于軸對稱可知關于對稱,進而利用特殊值構造方程,從而求得結果.【詳解】向左平移個單位長度后得到偶函數圖象,即關于軸對稱關于對稱即:本題正確結果:【點睛】本題考查根據三角函數的對稱軸求解參數值的問題,關鍵是能夠通過平移后的對稱軸得到原函數的對稱軸,進而利用特殊值的方式來進行求解.14、【解析】

首先利用絕對值的意義去掉絕對值符號,之后再結合后邊的函數解析式,對照函數值等于2的時候對應的自變量的值,從而得到分段函數的分界點,從而得到相應的等量關系式,求得參數的值.【詳解】根據題意可知,可以發現當或時是分界點,結合函數的解析式,可以判斷0不可能,所以只能是是分界點,故,解得,故答案是.【點睛】本題主要考查分段函數的性質,二次函數的性質,函數最值的求解等知識,意在考查學生的轉化能力和計算求解能力.15、【解析】

設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,將的長度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,如圖所示因為,,所以,,,又二面角的大小為,則,,所以,設外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數形結合,建立關于球的半徑的方程,本題計算量較大,是一道難題.16、20【解析】

由三視圖知該幾何體是一個圓柱與一個半球的四分之三的組合,利用球體體積公式、圓柱體積公式計算即可.【詳解】由三視圖知,該幾何體是由一個半徑為2的半球的四分之三和一個底面半徑2、高為4的圓柱組合而成,其體積為.故答案為:20.【點睛】本題考查三視圖以及幾何體體積,考查學生空間想象能力以及數學運算能力,是一道容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)最小值為1【解析】

(1)利用基本不等式可得,再根據0<xy<1時,即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數,∴|x+z|?|y+z|=(x+z)(y+z)≥=,當且僅當x=y=z時取等號.又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當且僅當x=y=z=1時取等號,∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉化思想和運算能力,屬中檔題.18、(1),(2)0【解析】

(1)分別把兩曲線參數方程中的參數消去,即可得到普通方程;(2)把直線的參數方程代入的普通方程,化為關于的一元二次方程,再由根與系數的關系及此時的幾何意義求解.【詳解】(1)由曲線的參數方程為為參數),消去參數,可得;由曲線的參數方程為為參數),消去參數,可得,即.(2)把為參數)代入,得.,..解得:,即,滿足△..【點睛】本題考查參數方程化普通方程,特別是直線參數方程中參數的幾何意義的應用,是中檔題.19、(I)詳見解析;(II)2【解析】

(I)求導得到f'(x)=ex-a,討論a≤0(II)f12=e-12a-5【詳解】(I)f(x)=ex-ax當a≤0時,f'(x)=e當a>0時,f'(x)=ex-a=0,x=lna當x∈lna,+∞時,綜上所述:a≤0時,fx在R上單調遞增;a>0時,fx在-∞,ln(II)f(x)=ex-ax-bf12=現在證明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故當x∈0,+∞上時,x2+1f'x在x∈0,+∞上單調遞增,故fx在0,12上單調遞減,在1綜上所述:a+5b的最大值為【點睛】本題考查了函數單調性,函數的最值問題,意在考查學生的計算能力和綜合應用能力.20、(1)增區間為,減區間為;(2).【解析】

(1)將代入函數的解析式,利用導數可得出函數的單調區間;(2)求函數的導數,分類討論的范圍,利用導數分析函數的單調性,求出函數的最值可判斷是否恒成立,可得實數的取值范圍.【詳解】(1)當時,,則,當時,,則,此時,函數為減函數;當時,,則,此時,函數為增函數.所以,函數的增區間為,減區間為;(2),則,.①當時,即當時,,由,得,此時,函數為增函數;由,得,此時,函數為減函數.則,不合乎題意;②當時,即時,.不妨設,其中,令,則或.(i)當時,,當時,,此時,函數為增函數;當時,,此時,函數為減函數;當時,,此時,函數為增函數.此時,而,構造函數,,則,所以,函數在區間上單調遞增,則,即當時,,所以,.,符合題意;②當時,,函數在上為增函數,,符合題意;③當時,同理可得函數在上單調遞增,在上單調遞減,在上單調遞增,此時,則,解得.綜上所述,實數的取值范圍是.【點睛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論